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Abstract— Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that

organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to

social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this

work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles

(i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification

of a guilty entity, and identify the simplifying non-repudiation and honesty assumptions. We then develop and analyze a novel

accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust

watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

and apply our framework to the important data leakage scenarios of data outsourcing and social networks. In general, we consider LIME

, our lineage framework for data transfer, to be an key step towards achieving accountability by design.

Index Terms— Information leakage, data lineage, accountability, algorithm design and analysis, fingerprinting, oblivious transfer,

watermarking, public key cryptosystems, security and privacy protection
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1 INTRODUCTION

IN the digital era, information leakage through uninten-
tional exposures, or intentional sabotage by disgruntled

employees and malicious external entities, present one of
the most serious threats to organizations. According to an
interesting chronology of data breaches maintained by the
Privacy Rights Clearinghouse (PRC), in the United States
alone, 868;045;823 records have been breached from 4;355
data breaches made public since 2005 [1]. It is not hard to
believe that this is just the tip of the iceberg, as most cases
of information leakage go unreported due to fear of loss of
customer confidence or regulatory penalties: it costs compa-
nies on average $214 per compromised record [2]. Large
amounts of digital data can be copied at almost no cost and
can be spread through the internet in very short time. Addi-
tionally, the risk of getting caught for data leakage is very
low, as there are currently almost no accountability mecha-
nisms. For these reasons, the problem of data leakage has
reached a new dimension nowadays.

Not only companies are affected by data leakage, it is
also a concern to individuals. The rise of social networks
and smartphones has made the situation worse. In these
environments, individuals disclose their personal informa-
tion to various service providers, commonly known as third
party applications, in return for some possibly free services.
In the absence of proper regulations and accountability
mechanisms, many of these applications share individuals’
identifying information with dozens of advertising and
Internet tracking companies.

Even with access control mechanisms, where access to
sensitive data is limited, a malicious authorized user can

publish sensitive data as soon as he receives it. Primitives
like encryption offer protection only as long as the informa-
tion of interest is encrypted, but once the recipient decrypts
a message, nothing can prevent him from publishing the
decrypted content. Thus it seems impossible to prevent data
leakage proactively.

Privacy, consumer rights, and advocacy organizations
such as PRC [3] and EPIC [4] try to address the problem of
information leakages through policies and awareness. How-
ever, as seen in the following scenarios the effectiveness of
policies is questionable as long as it is not possible to prov-
ably associate the guilty parties to the leakages.

Scenario 1: Social networking. It was reported that third
party applications of the widely used online social network
(OSN) Facebook leak sensitive private information about
the users or even their friends to advertising companies [5].
In this case, it was possible to determine that several appli-
cations were leaking data by analyzing their behaviour
and so these applications could be disabled by Facebook.
However, it is not possible to make a particular application
responsible for leakages that already happened, as many
different applications had access to the private data.

Scenario 2: Outsourcing. Up to 108;000 Florida state
employees were informed that their personal information
has been compromised due to improper outsourcing [6].
The outsourcing company that was handed sensitive data
hired a further subcontractor that hired another subcontrac-
tor in India itself. Although the offshore subcontractor is
suspected, it is not possible to provably associate one of the
three companies to the leakage, as each of them had access
to the data and could have possibly leaked it.

We find that the above and other data leakage scenarios
can be associated to an absence of accountability mecha-
nisms during data transfers: leakers either do not focus on
protection, or they intentionally expose confidential data
without any concern, as they are convinced that the leaked
data cannot be linked to them. In other words, when entities
know that they can be held accountable for leakage of some
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information, they will demonstrate a better commitment
towards its required protection.

In some cases, identification of the leaker is made possi-
ble by forensic techniques, but these are usually expensive
and do not always generate the desired results. Therefore,
we point out the need for a general accountability mecha-
nism in data transfers. This accountability can be directly
associated with provably detecting a transmission history of
data across multiple entities starting from its origin. This is
known as data provenance, data lineage or source tracing.
The data provenance methodology, in the form of robust
watermarking techniques [7] or adding fake data [8], has
already been suggested in the literature and employed by
some industries. However, most efforts have been ad-hoc in
nature and there is no formal model available. Additionally,
most of these approaches only allow identification of the
leaker in a non-provable manner, which is not sufficient in
many cases.

1.1 Our Contributions
In this paper, we formalize this problem of provably associ-
ating the guilty party to the leakages, and work on the data
lineage methodologies to solve the problem of information
leakage in various leakage scenarios.

As our first contribution, we define LIME, a generic data
lineage framework for data flow across multiple entities in
the malicious environment. We observe that entities in data
flows assume one of two roles: owner or consumer. We
introduce an additional role in the form of auditor, whose
task is to determine a guilty party for any data leak, and
define the exact properties for communication between
these roles. In the process, we identify an optional non-
repudiation assumption made between two owners, and an
optional trust (honesty) assumption made by the auditor
about the owners.

The key advantage of our model is that it enforces
accountability by design; i.e., it drives the system designer to
consider possible data leakages and the corresponding
accountability constraints at the design stage. This helps to
overcome the existing situation where most lineage mecha-
nisms are applied only after a leakage has happened.

As our second contribution, we present an accountable
data transfer protocol to verifiably transfer data between
two entities. To deal with an untrusted sender and an
untrusted receiver scenario associated with data transfer
between two consumers, our protocols employ an interest-
ing combination of the robust watermarking, oblivious
transfer, and signature primitives.

We implement our protocol as a C++ library: we use the
pairing-based cryptography (PBC) library [9] to build the
underlying oblivious transfer and signature primitives; we
choose the image as a representative document type and
use the Cox algorithm for robust image watermarking [10].
We thoroughly analyze the storage, communication and
computation overheads of our protocol, and our perfor-
mance analysis demonstrates its practicality. To simulate
longer data transfer chains, we also perform experiments
with multiple iterations of our implementation and find it
to be robust. Finally, we demonstrate usage of the protocol
to real-life data transfer scenarios such as online social net-
works and outsourcing.

Paper outline. We organize the remainder of this paper as
follows: In Section 2 we introduce our model LIME and give
a threat model and design goals. Section 3 describes primi-
tives used in the paper and Section 4 presents and analyzes
protocols for accountable data transfer. Section 5 shows
results we obtained from a practical implementation and
Section 6 gives examples of how our model can be applied
to real world settings. We discuss additional features of our
approach in Section 7 and related work in Section 8. Finally
we present our conclusions in Section 9.

2 THE LIME FRAMEWORK

As we want to address a general case of data leakage in data
transfer settings, we propose the simplifying model LIME

(Lineage in the malicious environment). With LIME we
assign a clearly defined role to each involved party and
define the inter-relationships between these roles. This
allows us to define the exact properties that our transfer
protocol has to fulfill in order to allow a provable identifica-
tion of the guilty party in case of data leakage.

2.1 Model
As LIME is a general model and should be applicable to all
cases, we abstract the data type and call every data item doc-
ument. There are three different roles that can be assigned to
the involved parties in LIME: data owner, data consumer and
auditor. The data owner is responsible for the management
of documents and the consumer receives documents and
can carry out some task using them. The auditor is not
involved in the transfer of documents, he is only invoked
when a leakage occurs and then performs all steps that are
necessary to identify the leaker. All of the mentioned roles
can have multiple instantiations when our model is applied
to a concrete setting. We refer to a concrete instantiation of
our model as scenario.

In typical scenarios the owner transfers documents to
consumers. However, it is also possible that consumers pass
on documents to other consumers or that owners exchange
documents with each other. In the outsourcing scenario [6]
the employees and their employer are owners, while the
outsourcing companies are untrusted consumers.

In the following we show relations between the different
entities and introduce optional trust assumptions. We only
use these trust assumptions because we find that they are
realistic in a real world scenario and because it allows us to
have a more efficient data transfer in our framework. At the
end of this section we explain how our framework can be
applied without any trust assumptions.

When documents are transferred from one owner to
another one, we can assume that the transfer is governed by
a non-repudiation assumption. This means that the sending
owner trusts the receiving owner to take responsibility if
he should leak the document. As we consider consumers
as untrusted participants in our model, a transfer involving
a consumer cannot be based on a non-repudiation assump-
tion. Therefore, whenever a document is transferred to a
consumer, the sender embeds information that uniquely
identifies the recipient. We call this fingerprinting. If the con-
sumer leaks this document, it is possible to identify him
with the help of the embedded information.
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As presented, LIME relies on a technique for embedding
identifiers into documents, as this provides an instrument
to identify consumers that are responsible for data leakage.
We require that the embedding does not not affect the util-
ity of the document. Furthermore, it should not be possible
for a malicious consumer to remove the embedded informa-
tion without rendering the document useless. A technique
that can offer these properties is robust watermarking. We
give a definition of watermarking and a detailed description
of the desired properties in Section 3.1.

A key position in LIME is taken by the auditor. He is not
involved in the transfer, but he takes action once a leakage
occurs. He is invoked by an owner and provided with the
leaked data. If the leaked data was transferred using our
model, there is identifying information embedded for each
consumer who received it. Using this information the audi-
tor can create an ordered chain of consumers who received
the document. We call this chain the lineage of the leaked
document. The last consumer in the lineage is the leaker.
In the process of creating the lineage each consumer can
reveal new embedded information to the auditor to point
to the next consumer—and to prove his own innocence. In
order to create a complete lineage it is necessary that the
auditor receives information from the owner, as only
the owner can reveal the information embedded during
the first transfer. We assume that the auditor is always
invoked by the owner or that he is at least provided with
information about the owners identity, so that the auditor
can start his investigation with the owner and a complete
lineage can be created.

We can assume that the auditor trusts the owner to be
honest. Honesty in this case means that the owner does not
leak a document and blame another party. We can make
this assumption as the owner is concerned with the doc-
ument’s privacy in the first place. However, the auditor
does not trust the consumers. In a real world setting the
auditor can be any authority, for example a governmental
institution, police, a legal person or even some software. In
the outsourcing scenario [6], the employer can invoke the
auditor who recreates the lineage and thereby uncovers the
identity of the leaker. The employer can use this information
to take legal actions against the outsourcing company. We
show the flow of documents, the optional non-repudiation
and honesty assumptions as well as the cases in which fin-
gerprinting is used in Fig. 1. In Section 6, we present how
LIME can be applied to the outsourcing scenario presented
in the introduction.

Remark. We choose these honesty and non-repudiation
assumptions because they realistically model many real-
world scenarios. Due to these assumptions we can
reduce the overhead introduced to transfers by LIME: In a
transfer between two owners no fingerprinting has to be
used and the owner can run a simplified transfer proto-
col because he is trusted by the auditor. However, these
trust assumptions are not necessary for the correctness
of LIME. If an owner is untrusted we can easily treat
him as a consumer, so we do not have to make any trust
assumptions about him.

2.2 Threat Model and Design Goals
Althoughwe try to address the problem of data leakage, LIME

cannot guarantee that data leakage does not occur in the first
place; once a consumer has received a document, nothing
can prevent him from publishing it. We offer a method to
provably identify the guilty party once a leakage has been
detected. By introducing this reactive accountability, we
expect that leakage is going to occur less often, since the
identification of the guilty party will in most cases lead to
negative consequences. As our only goal is to identify guilty
parties, the attackswe are concerned about are those that dis-
able the auditor from provably identifying the guilty party.

Therefore, we consider attackers in our model as con-
sumers that take every possible step to publish a document
without being held accountable for their actions. As the
owner does not trust the consumer, he uses fingerprinting
every time he passes a document to a consumer. However,
we assume that the consumer tries to remove this identify-
ing information in order to be able to publish the docu-
ment safely. As already mentioned previously, consumers
might transfer a document to another consumer, so we
also have to consider the case of an untrusted sender. This is
problematic because a sending consumer who embeds an
identifier and sends the marked version to the receiving
consumer could keep a copy of this version, publish it and
so frame the receiving consumer. Another possibility to
frame other consumers is to use fingerprinting on a docu-
ment without even performing a transfer and publish the
resulting document.

A different problem that arises with the possibility of
false accusation is denial. If false accusation is possible, then
every guilty receiving consumer can claim that he is inno-
cent and was framed by the sending consumer.

The crucial phase in our model is the transfer of a docu-
ment involving untrusted entities, so we clearly define

Fig. 1. The LIME framework: The framed box shows document transfers between owners and consumers. The auditor is a special entity which is only
required when a leakage occurs. The auditor then reconstructs the data lineage by communicating with the involved parties.
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which properties we require our protocol to fulfill. We call
the two parties sender and recipient. We expect a transfer
protocol to fulfill the following properties and only tolerate
failures with negligible probabilities.

1) Correctness: When both parties follow the protocol
steps correctly and only publish their version of the
document, the guilty party can be found.

2) No framing: The sender cannot frame recipients for
the sender’s leakages.

3) No denial: If the recipient leaks a document, he can be
provably associated with it.

We also require our model to be collusion resistant, i.e., it
should be able to tolerate a small number of colluding
attackers [11]. We also assume that the communication links
between parties are reliable.

Non-goals. We do not aim at proactively stopping data
leakage, we only provide means to provably identify the
guilty party in case a leak should occur, so that further steps
can be taken. We also do not aim for integrity, as at any
point an entity can decide to exchange the document to be
sent with another one. However, in our settings, the sender
wants the receiver to have the correct document, as he
expects the recipient to perform a task using the document
so that he eventually obtains a meaningful result.

Our approach does not account for derived data (derived
data can for example be generated by applying aggregate
functions or other statistical operations), as much of the
original information can be lost during the creation process
of derived data. Nevertheless, we show in Section 7.1 how
LIME can operate on composed data. We think of composed
data as a form of data created from multiple single docu-
ments, so that the original documents can be completely
extracted (e.g., concatenation of documents).

We do not consider fairness issues in our accountable
transfer protocol; more precisely, we do not consider sce-
narios in which a sender starts to run the transfer protocol
but aborts before a recipient received the document, or
when a recipient, despite of receiving the document, falsely
claims that he did not receive it. In real-world scenarios, we
find fairness not to be an issue as senders and recipients
expect some utility from the transfer, and are worried about
their reputation and corporate liabilities.

3 PRIMITIVES

A function f is negligible if for all c > 0 there is a nc so that

for all n � nc fðnÞ � 1
nc. In our scheme we make use of digital

signatures. More precisely, we use a CMA-secure signature
[12], i.e., no polynomial-time adversary is able to forge a
signature with non-negligible probability. For a message m
that has been signed with party A’s signing key, we
write ½m�skA : We use a symmetric encryption scheme that

offers security under chosen plaintext attacks, writing c ¼
encðm; ekÞ for encryption of a message m and m ¼ decðc; ekÞ
for decryption of a ciphertext cwith symmetric key ek.

3.1 Robust Watermarking
We use the definition of watermarking by Adelsbach et al.
[13]. To argue about watermarking, we need a so-called
similarity function simðD;D0Þ that returns > if the two

documents D and D0 are considered similar in the used
context and ? otherwise. The similarity function is a differ-
ent one for each data type used and we assume it is given.
For example, two images could be considered similar,
if a human observer can extract the same information
from them.

Let D be the set of all possible documents,WM� f0; 1gþ
the set of all possible watermarks, K the set of keys and k

the security parameter of the watermarking scheme. A sym-
metric, detecting watermarking scheme is defined by three
polynomial-time algorithms:

� The probabilistic Key Generation Algorithm

GenKeyWMð1kÞ outputs a key k 2 K for a given secu-
rity parameter k.

� The probabilistic Embedding Algorithm generates a
watermarked document D0 ¼ WðD;w; kÞ on input of
the original document D 2 D, the watermark
w 2 WM and the key k 2 K.

� The Detection Algorithm DetectðD0; w;D; kÞ outputs >
or ? on input of a (potentially watermarked) docu-
ment D0 2 D, a watermark w 2 WM, the original
document D 2 D and a key k 2 K. > means that the
watermark is detectable; ?means, that it is not.

We require the following properties:

� Imperceptibility: 8D 2 D; 8w 2 WM; 8 k 2 K:D0  
WðD;w; kÞ ) simðD; D0Þ ¼ >, i.e., the original doc-
ument and the watermarked document are similar.

� Effectiveness: 8D 2 D; 8w 2 WM; 8k 2 K:D0  WðD;
w; kÞ ) DetectðD0; w;D; kÞ ¼ >, i.e., if a watermark
is embedded using a key k, the same watermark
should be detectable using the same key k.

� Robustness: For a watermarked document D0 ¼ WðD;
w; kÞ; D 2 D; w 2 WM; k 2 K there is no polynomial-
time adversary that can compute a D00 2 D given D0

and w so that simðD0; D00Þ ¼ > and DetectðD00; w;
D; kÞ ¼ ? with non-negligible probability. This
means that no adversary can efficiently remove or
change a watermark without rendering the docu-
ment unusable (i.e., breaking the similarity).

Additionally, we require our watermarking scheme to
support multiple re-watermarking, i.e., it should allow for
multiple (bounded by the dataflow path length) watermarks
to be embedded successively without influencing their indi-
vidual detectability. This property can also be considered as
a special kind of robustness, as it prevents adversaries from
making a watermark undetectable simply by adding more
watermarks using the same algorithm. More information
and some experimental results about this property can be
found in [7].

We also expect the watermarking scheme to be collu-
sion resistant [14], i.e., even if an attacker can obtain dif-
ferently watermarked versions of a document, he should
not be able to create a version of the document were
none of these watermarks is detectable. Further, for some
watermarking schemes the input of the original docu-
ment is not required for detection of watermarks. We call
those watermarking schemes blind. As already stated in
[13] this definition of watermarking is very strong and its
properties are not yet provided by available schemes.
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Although we chose this strong definition to prove the
correctness of our scheme, there are existing schemes
whose properties are arguably sufficient in practice such
as the Cox watermarking scheme [10].

Cox watermarking scheme [10]. This scheme uses spread-
spectrum embedding of Gaussian noise to watermark
images. To provide robustness, the watermark is embedded
in the most significant part of the picture, so that removing
the watermark should not be possible without destroying
the underlying picture. The a-factor of the algorithm is a
parameter that determines how strong the Gaussian noise is
influencing the original image, thus it can be used to trade
robustness against imperceptibility. Although our strong
robustness requirement is not formally fulfilled, it is shown
that the scheme is robust against many common attacks
such as scaling, JPEG compression, printing, xeroxing and
scanning, multiple re-watermarking and others [10].

3.2 1-Out-of-2 Oblivious Transfer
1-out-of-2 Oblivious Transfer ðOT 2

1 Þ involves two parties,
the sender and the chooser. The sender offers two items M0

andM1 and the chooser chooses a bit s. The chooser obtains
Ms but no information about M1�s and the sender learns
nothing regarding s. In this context, when speaking of
learning nothing, we actually mean nothing can be learned
with non-negligible probability.

When we use OT 2
1 in our protocols to send messages, the

sender actually encrypts the messages, sends both cipher-

texts to the chooser and performs OT 2
1 just on the decryp-

tion keys. This allows us to use the OT 2
1 protocol with a

fixed message size while actually sending messages of arbi-
trary size. Note that this could only be a security risk if the
chooser was able to break the encryption scheme.

There are different concrete instantiations of this primi-
tive. As an example implementation of OT 2

1 we show a pro-
tocol by Naor and Pinkas [15] in the Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2015.2399296.

4 ACCOUNTABLE DATA TRANSFER

In this section we specify how one party transfers a docu-
ment to another one, what information is embedded and
which steps the auditor performs to find the guilty party in
case of data leakage. We assume a public key infrastructure
to be present, i.e., both parties know each others signature
verification key.

4.1 Trusted Sender
In the case of a trusted sender it is sufficient for the sender to
embed identifying information, so that the guilty party can
be found. As the sender is trusted, there is no need for fur-
ther security mechanisms. In Fig. 2, we present a transfer
protocol that fulfills the properties of correctness and no
denial as defined in Section 2.2. As the sender is trusted to
be honest, we do not need the no framing property.

The sender, who is in possession of some document D,
creates a watermarking key k, embeds a triple s ¼ ðCS;
CR; tÞ consisting of the two parties’ identifiers and a time-
stamp t into D to create Dw ¼ WðD; s; kÞ. He then sends Dw

to the recipient, who will be held accountable for this

version of the document. As the sender also knows Dw, this
very simple protocol is only applicable if the sender is
completely trusted; otherwise the sender could publish Dw

and blame the recipient.

4.2 Untrusted Sender
In the case of an untrusted sender we have to take addi-
tional actions to prevent the sender from cheating, i.e., we
have to fulfill the no framing property. To achieve this prop-
erty, the sender divides the original document into n parts
and for each part he creates two differently watermarked
versions. He then transfers one of each of these two versions

to the recipient via OT 2
1 . The recipient is held accountable

only for the document with the parts that he received, but
the sender does not know which versions that are. The

probability for the sender to cheat is therefore 1
2n. We show

the protocol in Fig. 3 and provide an analysis of the protocol
properties in Section 4.4.

First, the sender generates two watermarking keys k1 and
k2. It is in his own interest that these keys are fresh and dis-
tinct. The identifying information that the sender embeds
into the documentD is a signed statement s ¼ ½CS; CR; t�skCR

containing the sender’s and recipient’s identifiers and a
timestamp t, so that every valid watermark is authorized by
the recipient. The sender computes the watermarked docu-
ment D0 ¼ WðD; s; k1Þ, splits the document D0 into n parts
and creates two different versionsDi;j ¼WðDi; j; k2Þ of each
part by adding an additional watermark j 2 f0; 1g. For each
version of each partDi;j, i 2 f1; . . . ; ng; j 2 f0; 1g he creates a
signed message mi;j ¼ ½t; i; j�skCS

containing the timestamp

of the current transfer, the part’s index and the content of the
version’s second watermark. Then he generates an AES key
eki;j, encrypts ci;j ¼ encðhDi;j;mi;ji; eki;jÞ and sends ci;j to the
recipient. The recipient chooses a bit bi 2 f0; 1g for each
i 2 f1 . . .ng and receives eki;bi via oblivious transfer (note

that the n executions of OT 1
2 can be parallelized). He then

decrypts all ci;bi using eki;bi and reconstructs the document

by joining the parts D1;b1 . . .Dn;bn . The signed statements

m1;b1 . . .mn;bn serve as proof of his choice. As for each part he

chooses a bit bi, the final version is identified by a bitstring

b 2 f0; 1gn. As he will only be held accountable for the ver-

sion watermarked with b, we have a failure probability (i.e.,

the sender correctly guessing b) of 1
2n.

4.3 Data Lineage Generation
The auditor is the entity that is used to find the guilty party
in case of a leakage. He is invoked by the owner of the docu-
ment and is provided with the leaked document. In order to

Fig. 2. Protocol for trusted senders: The sender watermarks the original
document with a signed statment containing the participants’ identifiers
and a timestamp, and sends the watermarked document to the recipient.
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find the guilty party, the auditor proceeds in the following
way:

1) The auditor initially takes the owner as the current
suspect.

2) The auditor appends the current suspect to the
lineage.

3) The auditor sends the leaked document to the cur-
rent suspect and asks him to provide the detection
keys k1 and k2 for the watermarks in this document
as well as the watermark s. If a non-blind water-
marking scheme is used, the auditor additionally
requests the unmarked version of the document.

4) If, with key k1, s cannot be detected, the auditor con-
tinues with 9.

5) If the current suspect is trusted, the auditor checks
that s is of the form ðCS;CR; tÞ where CS is the iden-
tifier of the current suspect, takes CR as current sus-
pect and continues with 2.

6) The auditor verifies that s is of the form ½CS;
CR; t�skCR

where CS is the identifier of the current

suspect. He also verifies the validity of the signature.
7) The auditor splits the document into n parts and for

each part he tries to detect 0 and 1 with key k2. If
none of these or both of these are detectable, he con-
tinues with 9. Otherwise he sets b0i as the detected bit

for the ith part. He sets b0 ¼ b01 . . . b
0
n.

8) The auditor asks CR to prove his choice of b ¼
b1 � � � bn for the given timestamp t by presenting the
mi;bi ¼ ½t; i; bi�skCS

. If CR is not able to give a correct

proof (i.e., mi;bi is of the wrong form or the signature

is invalid) or if b ¼ b0, then the auditor takes CR as
current suspect and continues with 2.

9) The auditor outputs the lineage. The last entry is
responsible for the leakage.

Remark. It would also be possible to include the signed
statement s in every single part of the document, but as
the maximum size of a watermark is limited by the doc-
ument’s size, this might be problematic for scenarios
where the parts are small. Therefore, we embed s in
the complete original document and only embed single
bits to the (possibly small) parts of the document. We use
a timestamp t to uniquely identify a specific transfer
between two parties, and thus assume that no two trans-
fers between the same two parties take place at the same
time. However, it would be possible to use a counter that
is incremented on each transfer to allow multiple trans-
fers at the exact same time.

4.4 Analysis of the Protocol
We now show that the protocol presented in Fig. 3 fulfills
the required properties of correctness, no framing and no
denial as presented in Section 2.2:

1) Correctness: Assume that both parties follow the pro-
tocol steps correctly. Assuming the correctness of the
encryption, watermarking, signature and oblivious
transfer scheme, we show that for all possible scenar-
ios the guilty party can be determined correctly:
a) The sender publishes D or D0: The auditor does not

detect s (in the case of D) or the bi values (in the
case of D0) and correctly blames the sender,
because both watermarks have to be present in
order to blame the recipient.

b) The recipient publishes Dw: The auditor success-

fully detects s and b0 in the leaked document and
verifies that s is of the correct form. The recipient

Fig. 3. Protocol for untrusted senders: The sender splits a watermarked document into n parts and creates two different versions of each part by
embedding another watermark. The recipient via OT receives one of two version of each part as well as a signed statement as proof of his choice.
The recipient joins the individual parts to create his version of the document.
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is able to provide the proof of his choice of b; the

auditor verifies b0 ¼ b and suspects the recipient.
As there are no further watermarks embedded,
the auditor correctly blames the recipient.

False positives in the watermark detection (i.e., a water-

mark is detected, although it is actually not present) is not a

big issue, as the probability that the correct bitstring of

length n is spuriously detected is negligible. False negatives

(i.e., a watermark is not detected, although it is embedded

in the document) can be problematic, because if water-

marks are not detected the auditor blames the sender. Nev-

ertheless, as discussed in Section 7.3, if false negatives are

expected to occur, one would have to modify the scheme to

tolerate those.

2) No framing: In a first stepwe show that the sender can-
not obtain the version of the document for which the
recipient can prove his choice (i.e., the version water-
marked with the bitstring b): The sender knows all
the Di;j, that are used for the computation of Dw, but

he does not know the bitstring b that the recipient
chose due to the properties of oblivious transfer.

He can guess a bitstring b	 ¼ b	1 � � � b	n and create

D	w ¼ joinðD1;b	
1
; . . . ; Dn;b	nÞ but b and b	 (and therefore

Dw and D	w) are the same only with negligible proba-

bility of 1
2n, so the probability for the sender to learn

Dw is negligible if he follows the protocol correctly.

The sender might try to learn about b by deviating
from the protocol and offering the same version
twice during the oblivious transfer. Usually the
recipient would have no possibility of realizing this,
as he cannot detect the watermark, but as the sender
additionally has to send the signed statements mi;j ¼
½t; i; j�skCS

the recipient can verify that he received

what he asked for. This is the case because j has by
construction the same value as bi chosen by the recip-
ient. The sender can still send a wrong version Di;1�j
and so know the bitstring the document is water-
marked with, but as the recipient only proves his
choice of b, the sender still cannot frame him; he
would only lose the ability to prove the recipients’
guilt in case the recipient publishes the document.

In a second step we show that a malicious
sender cannot create a document that the recipient
will be held accountable for without running the
transfer protocol:

As the correctness of the signed statement s is ver-
ified in the auditing process and as the sender can
only forge the recipient’s signature with negligible
probability, the only possibility to mount this attack
is to reuse a valid signed statement from a past trans-
action. This implies that the included timestamp t is
the same, too. As the auditor asks the recipient

to prove his choice of b for this t, the recipient is able
to provide a correct proof, as a valid transfer with
timestamp t actually happened. Analogous to the

previous case, the sender can only chose b	 2 f0; 1gn
randomly and therefore he can only succeed with
negligible probability.

From these two steps it follows that the sender is
not able to frame a recipient.

3) No denial: We first show that the recipient cannot
publish a version of the document whose embedded
watermarks are different from those embedded in
the version Dw of the document that he righteously
obtained. He also cannot obtain the watermark-free
version D: As the recipient only receives the water-
marked version, he could only learn D by removing
the watermark, which he can only do with negligible
probability due to the robustness property of the
watermarking scheme. The recipient could also cre-
ate a watermarked version with a different bitstring
embedded, if he is able to get Di;1�bi for some i, but

this is only possible if he breaks the OT 1
2 scheme or

the encryption scheme, which is only possible with
negligible probability.

We now show that a recipient cannot cheat during
the auditing process, when he proves which version
of the document he asked for during the transfer

protocol: In order to prove another choice of b he

would again have to break the OT 1
2 scheme or the

encryption scheme in order to learn the mi;1�bi for

some i or he would need to forge the sender’s signa-
ture to create mi;1�bi for some i. As all of this is only

possible with negligible probability, the overall prob-
ability for the recipient to succeed is negligible.

From these two steps it follows that the recipi-
ent is not able to publish a document without
being caught.

This proves our protocol’s security up to fairness issues.
However, as discussed in Section 2.2, we do not find fair-
ness issues to be problematic in our application scenarios.

5 IMPLEMENTATION AND MICROBENCHMARKING

We implemented the protocol in Fig. 3 as a proof-of-con-
cept and to analyze its performance. For the oblivious
transfer subprotocol we implemented the protocol by
Naor and Pinkas [15] using the PBC library [9], which
itself makes use of the GMP library [16]. For signatures
we implemented the BLS scheme [17], also using the
PBC library. For symmetric encryption we used an imple-
mentation of AES from the Crypto++ [18] library. For
watermarking we used an implementation of the Cox
algorithm for robust image watermarking [10] from
Peter Meerwald’s watermarking toolbox [19]. We set the
a-factor, which determines the strength of the watermark,
to a value of 0.1.

We executed the experiment with different parameters to
analyze the performance. The sender and recipient part of
the protocol are both executed in the same program, i.e., we
do not analyze network sending, but only computational
performance. The executing machine is a Lenovo ThinkPad
model T430 with 8 GB RAM and 4 
 2.6 GHz cores, but
all executions were performed sequentially. We measured
execution times for different phases of the protocol: water-
marking, signature creation, encryption, oblivious transfer
and detection. We executed each experiment 250 times
and determined the average computation time and the stan-
dard deviation.
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In the first experiment we used an image of size
512
 512 pixels and changed the number of parts the image
was split into. We show the results in Fig. 4a. We can see
that the execution time of watermarking, signatures, oblivi-
ous transfer and detection is linear in the number of docu-
ment parts. The execution time of encryption is also
increasing slowly, but it is still insignificant compared to the
other phases.

In the second experiment we used a fixed number of
document parts of 256 and changed the size of the image
used. We used four different sizes: 256
 256 px (65 KB),
512
 512 px (257 KB), 1;024
 1;024 px (1.1 MB) and
2;048
 2;048 px (4.1 MB). The results can be seen in Fig. 4b.
We can observe that the execution time for watermarking
and detection is linear in the image size, but in contrast to
the previous result, we already start with a long execution
time for small sizes and the growth is rather slow. The exe-
cution time for oblivious transfer stays constant, which
might be surprising at first sight, but this can be explained
easily, as we only transfer AES keys in the oblivious transfer
phase and these are of constant size for all image sizes.
Of course the encrypted files also have to be sent over
the network (so there would be a higher communication
overhead for bigger images), but in this experiment we only

considered the computational costs. The execution time for
the creation of the signatures is also constant as the number
and form of the signed statements is the same for all images.
Again the execution time of encryption is increasing slowly,
but it is of no significance compared to the other phases.

The tests showed that from the resulting files all water-
marks (i.e., the identifying watermark s and all the single

bits bi forming the bitstring b) could be correctly detected,
showing the correctness of our protocol. In Fig. 5a1 we
give an example of an image that was transferred using
our algorithm.

We find that latencies of a few seconds are acceptable in
the scenarios that we considered. Additionally, as we show
in our experiments in Fig. 4a, one can easily perform a
tradeoff between performance and security. It is also possi-
ble to use the OT extension technique presented in [20] to
increase the efficiency of oblivious transfer.

Although we use only image files as documents in our
experimental implementation, we stress that the same
mechanism can be used for all types of data for which
robust watermarking schemes exist.

5.1 Communication Overhead
Assuming 128-bit security level for encryptions and signa-
tures, and splitting the document of size s into n parts, we
can compute the communication overhead as follows: First
the recipient sends s consisting of two identifiers (8 bytes),
one Unix timestamp (8 bytes) and one BLS signature
(32 bytes). The sender in return sends 2n times a document
part of size s

n and a message consisting of one timestamp

(8 bytes), one single bit, one integer (4 bytes) together with
the according BLS signature (32 bytes). This totals to
2 � ðsþ n � ð8þ 1þ 4þ 32ÞÞ ¼ 2 � ðsþ 45nÞ bytes. Addition-
ally, sender and recipient run n parallel instances of an
oblivious transfer protocol (in our case the one by Naor
and Pinkas [15]). In each protocol run, the sender sends
two group elements (64 bytes) in the initalization phase.
In the transfer phase the chooser sends one group element
(32 bytes) and the sender sends two encryptions of mes-
sages (which are AES keys in our case) (64 bytes). In total
the sender sends 2sþ 218n bytes and the recipient sends
32nþ 48 bytes. For our example with an image of size
s ¼ 1 MB and n ¼ 64 we have a communication overhead
of 2:008 MB for the sender and 2:05 KB for the recipient,
which we find to be practical.

5.2 Storage Overhead
Both parties need to store some data so that they can pro-
vide the necessary information to the auditor during the
process of lineage generation. The sender needs to store the
first watermark s (48 bytes) and two watermarking keys.
For a non-blind watermarking scheme like the Cox algo-
rithm used in our implementation the sender also needs to
store the original document. As overhead, the recipient has
to store only the n signed statements (mi;bi ) (45 bytes each)

that he receives during the oblivious transfer phase.

5.3 Multiple Iterations
Fig. 5a2 shows an image that was transferred thrice with
our scheme. In our experiments we discovered that in

Fig. 4. (a) shows computation times for different numbers of document
parts; (b) shows computation times for different image sizes.
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some cases one or two of the 64 bits that had been
embedded during the first transfer could not be detected
correctly in the final version. In Section 7.3 we explain
how we can introduce error tolerance in our scheme to
deal wiht this problem.

Figs. 5b1 and 5b2 show the results of iterative experi-
ments with strong watermarks. In this case we can reliably
detect all 64 embedded bits from each transfer step. How-
ever, with these strong watermarks, we can observe a noti-
cable distortion to the original document. We further
discuss this issue in Section 7.4.

6 SCENARIOS

6.1 Outsourcing
The first diagram in Fig. 6 shows a typical outsourcing sce-
nario. An organization acts as owner and can outsource
tasks to outsourcing companies which act as consumers in
our model. It is possible that the outsourcing companies
receive sensitive data to work on and as the outsourcing

companies are not necessarily trusted by the organization,
fingerprinting is used on transferred documents. The out-
sourcing company itself can outsource tasks to other out-
sourcing companies and thus relay the documents, again
using fingerprinting. It is important to notice that a single

Fig. 6. Outsourcing scenario.

Fig. 5. (a1) shows an image transferred once with our scheme. (a2) shows the same image transferred three times with our scheme. In (b1) we set
the a-factor used by the Cox algorithm to 0.5 in order to obtain stronger watermarks for the small parts. As a result differences between adjacent doc-
ument parts are visible. (b2) shows the result after three transfers with the stronger watermark in (b1).
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organization can outsource to may different outsourcing
companies in parallel, thus creating a tree-shaped transfer
diagram. If now at any point one of the involved outsourc-
ing companies leaks a confidential document, the organiza-
tion can invoke the auditor to find the responsible party.
The auditor then asks the organization to reveal the first
set of fingerprints in the leaked document, which leads the
auditor to one of the outsourcing companies. This out-
sourcing company can in turn reveal additional finger-
prints in the leaked document in order to point to the next
outsourcing company and to prove its own innocence.
Finally, the auditor creates the complete lineage and is able
to determine the guilty party. In the example [6] given in
the introduction, there were three outsourcing companies
involved and a data leakage could not be clearly associated
with one of these. The responsible party can be clearly
found using LIME.

6.2 Online Social Network
The second diagram in Fig. 6 shows an online social net-
working scenario. The users of the network are the owners,
as they enter their personal information, post messages,
etc. The online social network uses all this information as a
consumer in this scenario. Third party applications that
have access to this information in return for some service
act as further consumers in this scenario. The users give
their information to the OSN which can relay that informa-
tion to third party applications using fingerprinting. In
case of a leakage the auditor can create the lineage of the
leaked document and thereby provably determine the
responsible party.

In the introduction we gave an example where third
party applications leaked private information of Facebook
users to advertising companies [5]. Although, using forensic
methods, it was possible to determine which applications
leaked data, given some leaked information it is not possible
to find the responsible application. Using LIME this link can
be found and proven.

7 DISCUSSION

7.1 Composability
LIME also allows us to create a lineage for a document that
is published as part of a composed object. Consider the fol-
lowing setting: Owner A and Owner B each own a set of
database entries DA and DB which they both transfer to

Consumer 1, who receives marked versions D1
A and D1

B.

Consumer 1 then creates a composed object D1 ¼ D1
AjjD1

B

by concatenation and transfers it further to Consumer 2,

who receives a marked version D2 ¼ D2
AjjD2

B and then
leaks it. If Owner 1 notices that his set of database entries

was published as part of the composed object D2 ¼
D2

AjjD2
B, he invokes the auditor and provides him with D2,

D2
A, DA, the watermark and the necessary detection keys.

The auditor detects the watermarks in D2
A and verifies

that this version was transferred to Consumer 1, who
proves that he transferred the composed data to Con-
sumer 2 by showing the watermark and the detection
keys for the composed document. As Consumer 2
cannot disprove his guilt, he can be held accountable for

publishing a version of DA even though he published it
as part of composed data.

7.2 Collusion Resistance
The collusion resistance of our scheme depends on the
collusion resistance of the underlying watermarking
scheme. Assume several consumers are working together
in order to create an untraceable version of a document.
Then their approach is to merge the versions they right-
fully obtained to create a new version where the water-
marks cannot be detected. As the detection of s is just a
detection of a watermark in the complete document, we
obviously have the same collusion resistance as the water-
marking scheme for this case. The case of the detection of
a bit bi in a part Di is again just a detection of a water-
mark, so the collusion resistance is again the same as for
the watermarking scheme. However, we have to know
which detected bit belongs to which consumer, so that
we can still guarantee that the sender cannot frame the
receiving consumers. Linking the detected bits to the
responsible consumers is possible, as for each consumer a
different embedding key was used. As for each part mul-
tiple bits might be detectable, the probability for a sender
to successfully frame the receiving consumers is less than
or equal to the probability of framing a single recipient
successfully, as he still would have to guess all the bits
correctly. However, we have to note that in order to suc-
cessfully mount a collusion attack against our scheme, it
is sufficient to mount a collusion attack against 1 of the
nþ 1 watermarks that are used, where n is the number of
parts the document was split into.

We can conclude that our scheme tolerates collusions to a
certain extent, when it is used with a collusion resistant
watermark, without losing its key properties.

7.3 Error Tolerance
Depending on the quality of the underlying watermarking
scheme, it may be too strong to require that all bits bi are
detected correctly. Therefore, it could be a good idea to
introduce some error tolerance. However, we have to keep
in mind that this will increase the probability of the sender
successfully framing an innocent recipient. There are two
different kinds of errors that can occur: the first one is that
no bit can be detected, and the second one is that a wrong
bit is detected. Assume the document is split into n parts.
Tolerating a non-detectable bit increases the probability of
successful framing by a factor of 2. Instead of guessing a

bitstring b 2 f0; 1gn, it is sufficient to guess b 2 f0; 1gn�1.
Tolerating a wrong bit is worse, as it increases this proba-
bility by a factor of ðnþ 1Þ. Instead of accepting just the
correct bitstring, we also accept all bitstrings that are
changed at exactly one position. As there are n positions,
we additionally accept n bitstrings; hence the number of
accepted bitstrings and thus the probability of guessing
one of these is higher by a factor of nþ 1. If we want to
allow some error tolerance while keeping the probability
of successful framing to be small, we have to choose a
larger n; e.g., to tolerate 128 non-detectable bits, we choose
n ¼ 256 and have the same framing probability as with
n ¼ 128 and no tolerance.
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7.4 Possible Data Distortion
In our experiment, we used a simple splitting algorithm: We
split the image into n equally sized squares. However, when
we used a strong watermark for the small parts (that is the
a-factor used by the Cox algorithm is 0.5), differences
between adjacent parts became visible even though the sin-
gle watermarks are imperceptible. The resulting image can
be seen in Fig. 5b1. This effect becomes even stronger after
multiple iterations as observed in Fig. 5b2. In some cases,
this distortion might affect the usability of the document.
We stress however, that we were still able to obtain good
results with our approach. In Fig. 5a1 we used the Cox algo-
rithm with an alpha factor of 0.1 and no distortion is visible.

It might be interesting to investigate if this problem can
be circumvented by using more elaborate splitting algo-
rithms. As most watermarking schemes make use of the
contiguity of information in the document, this is not a triv-
ial task.

8 RELATED WORK

A preliminary shorter version of this paper appeared at
the STM workshop [21]. This version constitutes a signifi-
cant extension by including the following contributions:
We give a more detailed description of our model, a for-
mal specification of the used primitives, an analysis of
the introduced protocol, a discussion of implementation
results, an application of our framework to example
scenarios, a discussion of additional features and an
extended discussion of related work.

8.1 Other Models
Hasan et al. [22] present a system that enforces logging of
read and write actions in a tamper-proof provenance chain.
This creates the possibility of verifying the origin of infor-
mation in a document. However, as an attacker is able to
strip of the provenance information of a file, the problem of
data leakage in malicious environments is not tackled by
their approach.

The model introduced in [8] intends to help the data dis-
tributor to identify the malicious agent which leaked the
information. In addition, they argue that current water-
marking techniques are not practical, as they may embed
extra information which could affect agents’ work and their
level of robustness may be inadequate. In LIME the relation-
ship of data distributor and agents corresponds to the rela-
tionship between data owner and consumer and the model
could be used as an alternative method to trace the informa-
tion given to the consumers.

Controlled data disclosure is a well-studied problem in
the security literature, where it is addressed using access
control mechanisms. Although these mechanisms can con-
trol release of confidential information and also prevent
accidental or malicious destruction of information, they do
not cover propagation of information by a recipient that is
supposed to keep the information private. For example,
once an individual allows a third party app to access her
information from a social network, she can no longer control
how that app may redistribute the information. Therefore,
the prevalent access control mechanisms are not adequate
to resolve the problem of information leakages. Data usage

control enforcement systems [23], [24] employ preventive
measures to ensure that data is transferred in distributed
systems in a controlled manner preserving the well-defined
policies. Techniques have been developed for securely dis-
tributing data by forming coalitions among the data owners
[25]. In controlled environments, such techniques can be
composed with our protocols to improve data privacy.

In [26] the authors present the problem of an insider
attack, where the data generator consists of multiple sin-
gle entities and one of these publishes a version of the
document. Usually methods for proof-of-ownership or
fingerprinting are only applied after completion of the
generating process, so all entities involved in the genera-
tion process have access to the original document and
could possibly publish it without giving credit to the
other authors, or also leak the document without being
tracked. As presented in the paper, this problem can be
solved by the usage of watermarking and possibly even
by using complete fingerprinting protocols during the
generating phase of the document.

8.2 Other Fingerprinting Protocols
In [27] Poh addresses the problem of accountable data
transfer with untrusted senders using the term fair content
tracing. He presents a general framework to compare dif-
ferent approaches and splits protocols into four categories
depending on their utilization of trusted third parties, i.e.,
no trusted third parties, offline trusted third parties, online
trusted third parties and trusted hardware. Furthermore,
he introduces the additional properties of recipient ano-
nymity and fairness in association with payment. All pre-
sented schemes use watermarking to trace the guilty party
and most presented protocols make use of watermarking in
the encrypted domain, where encrypted watermarks are
embedded in encrypted documents [28]. A major advan-
tage of our scheme is that it can be used with every exist-
ing watermarking scheme without any modification. The
schemes relying on watermarking in the encrypted domain
only work with watermarking schemes that are designed
for this technique. A new scheme presented is based on
chameleon encryption [29]. In [30] Sadeghi also examines
several fingerprinting schemes and presents new construc-
tions for symmetric, asymmetric and anonymous finger-
printing schemes. The asymmetric scheme uses a
homomorphic commitment scheme to compute the finger-
printed version of the document.

Domingo-Ferrer presents the first fingerprinting protocol
that makes use of oblivious transfer in [31]. In the scheme,
documents are split into smaller parts and for each part two
different versions are created. Then the recipient receives
one version of each part via oblivious transfer and in return
sends a commitment on the received part. The recipient can
now be identified by the unique combinations of versions
he received. The protocol has several flaws, as discussed in
[32] and [33]. The main problem is that a malicious sender
can offer the same version twice in the oblivious transfer, so
that he will know which version the recipient receives.

Sadeghi [32] and Hanaoka et al. [33] propose different
solutions; the former lets the sender open some pairs to vali-
date that they are not equal and the latter uses oblivious
transfer with a two-lock cryptosystem where the recipient
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can compare both versions in encrypted form. However,
both proposed solutions have some flaws themselves. The
problem is that it is possible to create two different versions
with the same watermark, so even if the equality test fails,
the two offered versions can still have the same watermark
and the sender will know which watermark the recipient
received. Also, the fix proposed in [33] ruins the negligible
probability of failure, as it does not split the document
into parts, but creates n different versions and sends them
via 1-out-of-n oblivious transfer.

Domingo-Ferrer and Herrera-Joancomart presents
another protocol based on oblivious transfer in [34], but
again the sender can cheat during oblivious transfer. Hu
and Li [35] presents another protocol using oblivious trans-
fer. The protocol uses an approach similar to the chameleon
encryption [29], and using 1-out-of-n oblivious transfer a
decryption key is transmitted so that the sender does not
know it. The protocol suffers from the same problems as the
one presented in [33]; namely, the sender can guess the key
used by the recipient with non-negligible probability 1

n and
the sender can even cheat in the oblivious transfer by offer-
ing the same key n times, so that he will know the key used
by the recipient.

We see that all asymmetric fingerprinting protocols
based on oblivious transfer that have been proposed so far
suffer from the same weakness. We circumvent this prob-
lem in our protocol by additionally sending a signed mes-
sage including the watermark’s content, so that the
recipient is able to prove what he asked for. In contrast to
the watermark, this message can be read by the recipient, so
he can notice if the sender cheats.

8.3 Broadcasting
Parviainen and Parnes present an approach for distributing
data in amulticast system, so that every recipient holds a dif-
ferently watermarked version [36]. The sender splits the file
into blocks and for each block he creates two different ver-
sions by watermarking them with different watermarks and
encrypting them with different keys. Each recipient is
assigned a set of keys, so that he can decrypt exactly one ver-
sion of each part. The resulting combination of parts can
uniquely identify the recipient. In [37] Adelsbach et al. show
another approach for a broadcasting system that allows iden-
tification of recipients by their received files. With a tech-
nique called fingercasting, recipients automatically embed a
watermark in files during the decryption process. The pro-
cess is based on the chameleon cipher [29], which allows one
to decrypt an encrypted file with different decryption keys,
to introduce some noise that can be used as ameans of identi-
fication. In [38] Katzenbeisser et al. use the technique of fin-
gercasting together with a randomized fingerprinting code
in order to provide better security against colluding attack-
ers. However, in these broadcasting approaches the problem
of an untrusted sender is not addressed.

8.4 Watermarking
LIME can be used with any type of data for which water-
marking schemes exist. Therefore, we briefly describe dif-
ferent watermarking techniques for different data types.
Most watermarking schemes are designed for multimedia

files such as images [39], videos [40], and audio files [41]. In
these multimedia files, watermarks are usually embedded
by using a transformed representation (e.g., discrete cosine,
wavelet or Fourier transform) and modifying transform
domain coefficients.

Watermarking techniques have also been developed for
other data types such as relational databases, text files and
even Android apps. The first two are especially interesting, as
they allow us to apply LIME to user databases or medical
records. Watermarking relational databases can be done in
different ways. The most common solutions are to embed
information in noise-tolerant attributes of the entries or to cre-
ate fake database entries [42]. For watermarking of texts, there
are two main approaches. The first one embeds information
by changing the text’s appearance (e.g., changing distance
between words and lines) in a way that is imperceptible to
humans [43]. The second approach is also referred to as lan-
guage watermarking and works on the semantic level of the
text rather than on its appearance [44]. A mechanism also has
been proposed to insert watermarks to Android apps [45].
Thismechanism encodes awatermark in a permutation graph
and hides the graph as a linked list in the application. Due to
the list representation, watermarks are encoded in the execu-
tion state of the application rather than in its syntax, which
makes it robust against attacks. Suchanek et al. propose an
interesting approach for watermarking ontologies [46]. In this
approach the authors propose to rather remove existing infor-
mation than adding new information or modifying existing
information. Thereby the watermarking scheme guarantees
that no false entries are introduced. The above schemes can be
employed in our framework to create data lineage for docu-
ments of the respective formats. The only modification that
might be necessary when applying our scheme to a different
document type is the splitting algorithm. For example for
images it makes more sense to take small rectangles of the
original image instead of simply taking the consecutive bytes
from the pixel array.

Embedding multiple watermarks into a single document
has been discussed in literature and there are different tech-
niques available [7], [47], [48]. In [7] they discuss multiple
re-watermarking and in [48] the focus is on segmented
watermarking. Both papers show in experimental results
that multiple watermarking is possible which is very impor-
tant for our scheme, as it allows us to create a lineage over
multiple levels.

It would be desirable not to reveal the private water-
marking key to the auditor during the auditor’s investiga-
tion, so that it can be safely reused, but as discussed in [49],
[50], [51] current public key watermarking schemes are not
secure and it is doubtful if it is possible to design one that is
secure. In [52] Sadeghi presents approaches to zero-knowl-
edge watermark detection. With this technology it is possi-
ble to convince another party of the presence of a
watermark in a document without giving any information
about the detection key or the watermark itself. However,
the scheme discussed in [52] also hides the content of the
watermark itself and are therefore unfit for our case, as the
auditor has to know the watermark to identify the guilty
person. Furthermore, using a technology like this would
come with additional constraints for the chosen watermark-
ing scheme.
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9 CONCLUSION AND FUTURE DIRECTIONS

We present LIME, a model for accountable data transfer
across multiple entities. We define participating parties,
their inter-relationships and give a concrete instantiation for
a data transfer protocol using a novel combination of oblivi-
ous transfer, robust watermarking and digital signatures.
We prove its correctness and show that it is realizable by
giving microbenchmarking results. By presenting a general
applicable framework, we introduce accountability as early
as in the design phase of a data transfer infrastructure.

Although LIME does not actively prevent data leakage, it
introduces reactive accountability. Thus, it will deter mali-
cious parties from leaking private documents and will
encourage honest (but careless) parties to provide the
required protection for sensitive data. LIME is flexible as we
differentiate between trusted senders (usually owners) and
untrusted senders (usually consumers). In the case of the
trusted sender, a very simple protocol with little overhead
is possible. The untrusted sender requires a more compli-
cated protocol, but the results are not based on trust
assumptions and therefore they should be able to convince
a neutral entity (e.g., a judge).

Our work also motivates further research on data
leakage detection techniques for various document types
and scenarios. For example, it will be an interesting
future research direction to design a verifiable lineage
protocol for derived data.
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