
1

Dynamic and Public Auditing with Fair Arbitration
for Cloud Data

Hao Jin, Hong Jiang, Senior Member, IEEE, and Ke Zhou

Abstract—Cloud users no longer physically possess their data, so how to ensure the integrity of their outsourced data becomes a
challenging task. Recently proposed schemes such as “provable data possession” and “proofs of retrievability” are designed to address
this problem, but they are designed to audit static archive data and therefore lack of data dynamics support. Moreover, threat models in
these schemes usually assume an honest data owner and focus on detecting a dishonest cloud service provider despite the fact that
clients may also misbehave. This paper proposes a public auditing scheme with data dynamics support and fairness arbitration of
potential disputes. In particular, we design an index switcher to eliminate the limitation of index usage in tag computation in current
schemes and achieve efficient handling of data dynamics. To address the fairness problem so that no party can misbehave without
being detected, we further extend existing threat models and adopt signature exchange idea to design fair arbitration protocols, so that
any possible dispute can be fairly settled. The security analysis shows our scheme is provably secure, and the performance evaluation
demonstrates the overhead of data dynamics and dispute arbitration are reasonable.

Index Terms—Integrity auditing, public verifiability, dynamic update, arbitration, fairness.

F

1 INTRODUCTION

DATA oursourcing is a key application of cloud comput-
ing, which relieves cloud users of the heavy burden

of data management and infrastructure maintenance, and
provides fast data access independent of physical locations.
However, outsourcing data to the cloud brings about many
new security threats. Firstly, despite the powerful machines
and strong security mechanisms provided by cloud service
providers (CSP), remote data still face network attacks,
hardware failures and administrative errors. Secondly, CSP
may reclaim storage of rarely or never accessed data, or even
hide data loss accidents for reputation reasons. As users no
longer physically possess their data and consequently lose
direct control over the data, direct employment of tradition-
al cryptographic primitives like hash or encryption to ensure
remote data’s integrity may lead to many security loopholes.
In particular, downloading all the data to check its integrity
is not viable due to the expensive communication overhead,
especially for large-size data files. In this sense, message
authentication code (MAC) or signature based mechanisms,
while widely used in secure storage systems, are not suitable
for integrity check of outsourced data, because they can only
verify the integrity of retrieved data and do not work for
rarely accessed data (e.g., archive data). So how to ensure
the correctness of outsourced data without possessing the
original data becomes a challenging task in cloud comput-
ing, which, if not effectively handled, will impede the wide
deployment of cloud services.

Data auditing schemes can enable cloud users to check
the integrity of their remotely stored data without down-

• Hao Jin and Ke Zhou are with Wuhan National Lab for Optoelec-
tronics, School of Computer Science and Technology, Huazhong U-
niversity of Science and Technology, Wuhan, 430074, China. E-mail:
khow.hust@gmail.com and k.zhou@hust.edu.cn.

• Hong Jiang is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, NE, USA. E-mail: jiang@cse.unl.edu.

Manuscript received April 19, 2005; revised September 17, 2014.

loading them locally, which is termed as blockless verifi-
cation. With auditing schemes, users can periodically in-
teract with the CSP through auditing protocols to check
the correctness of their outsourced data by verifying the
integrity proof computed by the CSP, which offers stronger
confidence in data security because user’s own conclusion
that data is intact is much more convincing than that from
service providers. Generally speaking, there are several
trends in the development of auditing schemes.

First of all, earlier auditing schemes usually require the
CSP to generate a deterministic proof by accessing the whole
data file to perform integrity check, e.g., schemes in [1], [2]
use the entire file to perform modular exponentiations. Such
plain solutions incur expensive computation overhead at the
server side, hence they lack efficiency and practicality when
dealing with large-size data. Represented by the ”sampling”
method in ”Proofs of Retrievability” (PoR) [3] model and
”Provable Data Possession” (PDP) [4] model, later schemes
[5], [6] tend to provide a probabilistic proof by accessing part
of the file, which obviously enhances the auditing efficiency
over earlier schemes.

Secondly, some auditing schemes [3], [7] provide private
verifiability that require only the data owner who has the
private key to perform the auditing task, which may poten-
tially overburden the owner due to its limited computation
capability. Ateniese el al. [4] were the first to propose to
enable public verifiability in auditing schemes. In contrast,
public auditing schemes [5], [6] allow anyone who has the
public key to perform the auditing, which makes it possible
for the auditing task to be delegated to an external third
party auditor (TPA). A TPA can perform the integrity check
on behalf of the data owner and honestly report the auditing
result to him [8].

Thirdly, PDP [4] and PoR [3] intend to audit static data
that are seldom updated, so these schemes do not provide
data dynamics support. But from a general perspective, data

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

2

update is a very common requirement for cloud application-
s. If auditing schemes could only deal with static data, their
practicability and scalability will be limited. On the other
hand, direct extensions of these static data oriented schemes
to support dynamic update may cause other security threat-
s, as explained in [6]. To our knowledge, only schemes in
[6], [9], [10] provide built-in support for fully data dynamic
operations (i.e., modification, insertion and deletion), but
they are insufficient in providing data dynamics support,
public verifiability and auditing efficiency simultaneously,
as will be analyzed in the section of related work.

From these trends, it can be seen that providing proba-
bilistic proof, public verifiability and data dynamics support
are three most crucial characteristics in auditing schemes.
Among them, providing data dynamics support is the most
challenging. This is because most existing auditing schemes
intend to embed a block’s index i into its tag computation,
e.g., H(i||v) in [4] or H(name||i) in [5], which serves to au-
thenticate challenged blocks. However, if we insert or delete
a block, block indices of all subsequent blocks will change,
then tags of these blocks have to be re-computed. This is
unacceptable because of its high computation overhead.

We address this problem by differentiating between tag
index (used for tag computation) and block index (indi-
cate block position), and rely an index switcher to keep
a mapping between them. Upon each update operation,
we allocate a new tag index for the operating block and
update the mapping between tag indices and block in-
dices. Such a layer of indirection between block indices
and tag indices enforces block authentication and avoids
tag re-computation of blocks after the operation position
simultaneously. As a result, the efficiency of handling data
dynamics is greatly enhanced.

Furthermore and important, in a public auditing scenari-
o, a data owner always delegates his auditing tasks to a TPA
who is trusted by the owner but not necessarily by the cloud.
Current research usually assumes an honest data owner
in their security models, which has an inborn inclination
toward cloud users. However, the fact is, not only the
cloud, but also cloud users, have the motive to engage in
deceitful behaviors. For example, a malicious data owner
may intentionally claim data corruption against an honest
cloud for a money compensation, and a dishonest CSP may
delete rarely accessed data to save storage. Therefore, it is
of critical importance for an auditing scheme to provide
fairness guarantee to settle potential disputes between the
two parties. Zheng et al. [11] proposed a fair PoR scheme
to prevent a dishonest client from accusing an honest CSP,
but their scheme only realizes private auditing. Kupccu
[12] proposed general arbitration protocols with automated
payments using fair signature exchange protocols [13]. Our
work also adopts the idea of signature exchange to ensure
the metadata correctness and protocol fairness, and we
concentrate on combining efficient data dynamics support
and fair dispute arbitration into a single auditing scheme.

To address the fairness problem in auditing, we intro-
duce a third-party arbitrator(TPAR) into our threat model,
which is a professional institute for conflicts arbitration and
is trusted and payed by both data owners and the CSP. Since
a TPA can be viewed as a delegator of the data owner and is
not necessarily trusted by the CSP, we differentiate between

the roles of auditor and arbitrator. Moreover, we adopt the
idea of signature exchange to ensure metadata correctness
and provide dispute arbitration, where any conflict about
auditing or data update can be fairly arbitrated.

Generally, this paper proposes a new auditing scheme
to address the problems of data dynamics support, public
verifiability and dispute arbitration simultaneously. Our
contributions mainly lie in:

• We solve the data dynamics problem in auditing by
introducing an index switcher to keep a mapping
between block indices and tag indices, and eliminate
the passive effect of block indices in tag computation
without incurring much overhead.

• We extend the threat model in current research to
provide dispute arbitration, which is of great signif-
icance and practicality for cloud data auditing, since
most existing schemes generally assume an honest
data owner in their threat models.

• We provide fairness guarantee and dispute arbitra-
tion in our scheme, which ensures that both the
data owner and the cloud can not misbehave in the
auditing process or else it is easy for a third-party
arbitrator to find out the cheating party.

The rest of the paper is organized as follows. Section 2
introduces the system model, threat model and our design
goals. In Section 3 and 4, we elaborate on our dynamic au-
diting scheme and arbitration protocols. Further, we present
the security analysis and performance evaluation in Sections
5 and 6, respectively. Section 7 surveys the related work.
Finally, Section 8 concludes the paper.

2 PROBLEM STATEMENT

2.1 System Model
As illustrated in Fig. 1, the system model involves four
different entities: the data owner/cloud user, who has a
large amount of data to be stored in the cloud, and will
dynamically update his data (e.g., insert, delete or modify a
data block) in the future; the cloud service provider (CSP),
who has massive storage space and computing power that
users do not possess, stores and manages user’s data and
related metadata (i.e., the tag set and the index switcher);
the third party auditor (TPAU) is similar to the role of TPA
in existing schemes, who is a public verifier with expertise
and capabilities for auditing, and is trusted and payed by
the data owner (but not necessarily trusted by the cloud) to
assess the integrity of the owner’s remotely stored data; the
third party arbitrator (TPAR), who is a professional institute
for conflict arbitration and trusted by both the owner and
the CSP, which is different to the role of TPAU.

Cloud users rely on the CSP for data storage and main-
tenance, and they may access and update their data. To
alleviate their burden, cloud users can delegate auditing
tasks to the TPAU, who periodically performs the auditing
and honestly reports the result to users. Additionally, cloud
users may perform auditing tasks themselves if necessary.
For potential disputes between the auditor and the CSP, the
TPAR can fairly settle the disputes on proof verification or
data update . Note in following sections, we may use the
terms “TPAU” and “auditor” interchangeably, so are the
terms “TPAR” and “arbitrator”.

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

TMKS Infotech16
Highlight

3

Block & tag flow

Cloud

Service

Provider

Owner

& users

Auditing/update message

P
ub

lic
 k
ey

A
ud

iti
ng

 ta
sk

&
 a

ud
iti
ng

re
su

lt

Third Party Auditor (TPAU)

Arbitra
tio

n messageArbitration message

Third Party Arbitrator (TPAR)

A
uditing m

essage

Fig. 1. The system and threat model.

2.2 Threat Model

Threat models in existing public auditing schemes [4], [5],
[6], [14] mainly focus on the delegation of auditing tasks to
a third party auditor (TPA) so that the overhead on clients
can be offloaded as much as possible. However, such models
have not seriously considered the fairness problem as they
usually assume an honest owner against an untrusted CSP.
Since the TPA acts on behalf of the owner, then to what
extent could the CSP trust the auditing result? What if the
owner and TPA collude together against an honest CSP for
a financial compensation? In this sense, such models reduce
the practicality and applicability of auditing schemes.

In a cloud scenario, both owners and CSP have the
motive to cheat. The CSP makes profit by selling its storage
capacity to cloud users, so he has the motive to reclaim sold
storage by deleting rarely or never accessed data, and even
hides data loss accidents to maintain a reputation. Here, we
assume the CSP is semi-trusted, namely, the CSP behaves
properly as prescribed contract most of the time, but he may
try to pass the integrity check without possessing correct
data. On the other hand, the owner also has the motive
to falsely accuse an honest CSP, e.g., a malicious owner
intentionally claims data corruption despite the fact to the
contrary so that he can get a compensation from the CSP.

Therefore, disputes between the two parties are un-
avoidable to a certain degree. So an arbitrator for dispute
settlement is indispensable for a fair auditing scheme. We
extend the threat model in existing public schemes by dif-
ferentiating between the auditor (TPAU) and the arbitrator
(TPAR) and putting different trust assumptions on them.
Because the TPAU is mainly a delegated party to check
client’s data integrity, and the potential dispute may occur
between the TPAU and the CSP, so the arbitrator should be
an unbiased third party who is different to the TPAU.

As for the TPAR, we consider it honest-but-curious. It
will behave honestly most of the time but it is also curious
about the content of the auditing data, thus the privacy
protection of the auditing data should be considered. Note
that, while privacy protection is beyond the scope of this
paper, our scheme can adopt the random mask technique

proposed in [14], [15] for privacy preservation of auditing
data, or the ring signatures in [16] to protect the identity-
privacy of signers for data shared among a group of users.

2.3 Design Goals
Our design goals can be summarized as follows:

1) Public verifiability for data storage correctness: to
allow anyone who has the public key to verify the
correctness of users’ remotely stored data;

2) Dynamic operation support: to allow cloud users
to perform full block-level operations (modification,
insertion and deletion) on their outsourced data
while guarantee the same level of data correctness,
and the scheme should be as efficient as possible;

3) Fair dispute arbitration: to allow a third party ar-
bitrator to fairly settle any dispute about proof
verification and dynamic update, and find out the
cheating party.

3 OUR DYNAMIC AUDITING SCHEME

This section presents our dynamic auditing scheme with
dispute arbitration. After introducing notations and pre-
liminaries, we firstly describe the idea of index switcher
which keeps a mapping between block indices and tag
indices. Then, we present our main scheme and show how
to achieve data dynamics support using our index switcher.
Finally, we briefly discuss the efficiency of index switcher
update caused by dynamic operations.

3.1 Notation and Preliminaries
• F is the data file to be outsourced to the cloud, which

is defined as a sequence of blocks of the same size
F = {m1,m2, ...,mn}, where each mi ∈ Zp for some
large prime p.

• H(·) : {0, 1}∗ → G is a collision-resistant map-to-
point hash function who maps a string with arbitrary
length into a point in G, where G is a cyclic group.

• h(·) : {0, 1}∗ → {0, 1}l is a collision-resistant crypto-
graphic hash function.

BilinearMap. A bilinear map is a map e : G1 × G2 → GT ,
where G1 and G2 are two Gap Diffie-Hellman (GDH) group-
s of prime order p, and GT is another multiplicative cyclic
group with the same order. A bilinear map has the following
properties [22]: (i) Computable: there exists an efficiently
computable algorithm for computing e; (ii) Bilinear: for all
h1 ∈ G1, h2 ∈ G2 and a, b ∈ Zp, e(ha

1 , h
b
2) = e(h1, h2)

ab;
(iii) Non-degenerate: e(g1, g2) ̸= 1, where g1 and g2 are
generators of G1 and G2.

3.2 Definitions
Our dynamic auditing scheme with public verifiability and
dispute arbitration consists of the following algorithms.

KeyGen(1k). This algorithm is run by the client, which
takes as input security parameter 1k and generates a public-
private key pair (pk, sk).

TagGen(sk, F,Ω). This algorithm is run by the client,
which takes as input a secret key sk and user’s file F ∈

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

4

{0, 1}k as a collection of data blocks {mi}1≤i≤n, outputs a
tag set Φ = {σi}1≤i≤n, where σi is the tag for block mi. And
a signature on the metadata Ω signed with owner’s private
key is produced.

Commitment(pk, F,Φ,Ω). This algorithm is run by the
cloud, which takes as input the whole block set F and
the tag set Φ, generates an integrity proof and verifies its
validity with pk. This process ensures that the tag set Φ
received by the CSP is correctly computed from the block
set F . If succeeds, a signature on the metadata Ω signed
with CSP’s private key is produced.

ProofGen(chal, F,Φ). This algorithm is run by the
cloud, which takes as input a challenge request chal, the
data file F and the tag set Φ, outputs an integrity proof π.

ProofV erify(pk, chal, π). This algorithm is run by the
auditor, which takes as input the public key pk, the chal-
lenge chal and the integrity proof π, outputs TRUE if the
proof is verified as valid, which means that the file is stored
intact on the server, or FALSE otherwise.

Update(F,Φ, up req). This algorithm is run by the
cloud, which takes as input the data file F , the tag set Φ
and an update record up req from the client. It outputs the
updated file F ′ and tag set Φ’, and the update proof P of
the dynamic operation.

UpdateV erify(pk, up req, P). This algorithm is run by
the auditor, which takes as input the public key pk, the
update request up req and the update proof P from the
cloud. If succeeds, it outputs TRUE, or FALSE otherwise.

In our design, we do not have any additional require-
ment on the data to be stored on cloud servers. And
we regard erasure codes as orthogonal to our auditing
scheme because the owner can encode their data before
outsourcing them to the cloud. Additionally, the absence of
the Commitment algorithm in existing schemes [4], [5] is
because these schemes assume clients to be honest and they
mainly focus on detecting a dishonest CSP. While in our
threat model, we assume that both clients and CSP have
the motive to cheat, thus ensuring the correctness of initial
blocks and tags is indispensable for later dispute arbitration.

3.3 Index Switcher
In recent schemes [4], [5], the data file is first fragmented
into multiple blocks of the same size, then for each block
a tag is computed (e.g., σi = (H(i) · umi)x). As both the
block mi and its index i are used to compute its tag σi,
there exists a one-to-one correspondence between mi and
σi. Additionally, a tag is signed with a user’s private key x,
it cannot be forged due to the unforgeability of secure signa-
ture schemes. To initiate an auditing, the auditor generates
a challenge against a set of randomly selected blocks. The
CSP computes the proof π = (µ, σ), where µ is computed
from requested blocks and σ is computed from their tags.
Due to the aggregative property of homomorphic verifiable
tags [17], the one-to-one correspondence between a data
block and its tag is also kept in µ and σ. The verification
algorithm verifies the validity of the proof by verifying the
correspondence between µ and σ, namely, they must satisfy
some mathematic equation (e.g., bilinear pairing in [5]).

If we simplify the tag computation as σi = (umi)x,
then the server can cheat the auditor by using other non-
designated blocks to compute the proof. Since the index is

m1 m2 m3 m4 m5 m6 m7 m8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8tag_index

blk_index

m1 m2 m3 m4 m5 m6 m7 m8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

mi

9

9

insert a new block mi

delete block m4

m1 m2 m3 m5 m6 m7 m8

1 2 3 4 5 6 7 8

1 2 3 5 6 7 8

mi

9

modify block m6 to m6'

tag_index

blk_index

tag_index

blk_index

m1 m2 m3 m5 m6' m7 m8

1 2 3 4 5 6 7 8

1 2 3 5 10 7 8

mi

9tag_index

blk_index

mi

Fig. 2. An index switcher for handling data dynamics.

not embedded in a block’s tag, the verification algorithm
only verifies the correspondence between (umi)x and mi.
Therefore any blocks and their tags can pass the check as
long as they are intact. In this sense, embedding H(i) into
tag computation serves to authenticate blocks. However,
due to the index embedding, when a block is inserted or
deleted, the indices of all following blocks change and their
tags have to be re-computed, which is unacceptable because
of its high computation cost.

We address this problem by introducing an index switch-
er to maintain a mapping between block indices and tag
indices. In our construction, tag indices are used in tag
computation only, while block indices are used to indicate
the logical positions of data blocks. This layer of indirection
between block indices and tag indices can enforce block
authentication as long as the index switcher be updated for
each update. As a result, the expensive tag re-computation
of following blocks (after the operation position) caused
by dynamic update operations can be avoided, and the
efficiency of handling data dynamics is greatly enhanced.

An index switcher is actually a table used to keep a map-
ping between block indices and tag indices. As illustrated
in Fig.2, initially, tag indices and block indices appear as
the same sequence 1, 2, . . . , 8. After insertion of a new block
mi at position 4, the block index of mi is 5 while the tag
index of mi is 9 (5 is the block index of m5 before insertion).
After deletion of block m4, the block indices of following
blocks (mi,m5,m6,m7,m8) are incremented by one to keep
the block index sequence consecutive, while tag indices of
these following blocks do not change. After modification of
m6, its tag index is changed to 10. Here, we also allocate
a new tag index for block modification, which is to resist
potential replay attacks by a malicious CSP. For example, if
a block’s tag index does not change after modification, then
the CSP can discard the update by using the old pair of
(mk, σk) during a later auditing, and the proof can still pass

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

5

the verification.
Generally, block update will make the tag index se-

quence unordered and inconsecutive, while the block index
sequence always remains consecutive. In implementation,
a global monotonously increasing counter can be used to
generate a new tag index for each inserted or modified
block. Moreover, block insertion and deletion will cause
index pairs of all subsequent blocks (after the operation
position) to be shifted backward or forward a position in
the index switcher, and the block indices of these blocks to
be incremented or decreased by one. The cost of index pair
shifting is negligible as compared with the cost of tag re-
computation of following blocks, e.g., a 10-GB data file using
2-KB fragmentation generates 5 × 220 index pairs, shifting
all these pairs through insertion or deletion cost less than 50
miliseconds.

Finally, since the index switcher is needed by the auditor
during an auditing, its correctness affects the correctness of
the auditing result. To guarantee the correctness of the index
switcher and further the fairness of dispute arbitration, sig-
natures on the updated index switcher have to be exchanged
upon each dynamic operation, as we will further discuss it
in the next section.

3.4 Dynamic Auditing Scheme

Let G1, G2 and GT be multiplicative cyclic groups of prime
order p, g1 and g2 be generators of G1 and G2, respec-
tively. Let e : G1 × G2 → GT be a bilinear map, and
H(·) : {0, 1}∗ → G1 be a secure public map-to-point hash
function, which maps a string {0, 1}∗ uniformly into an
element of G1. Let Sigsk(seq,Ω) ← (h(seq||Ω))sk denote
a signature on the concatenation of a sequence number seq
and the index switcher Ω using the private key sk. Let skc
and sks denote the private key of the client and the CSP,
respectively. Then the scheme can be described as follows.

KeyGen. The data owner randomly chooses α← Zp and
u ← G1, computes v ← gα and w ← uα. The secret key is
sk = α and the public key is pk = (v, w, g, u).

TagGen. Given a data file F = {m1,m2, . . . ,mn}.
For each block mi, the owner computes its tag as σi =
(H(ti) · umi)α, where ti denotes the tag index of the block.
Denote the tag set by Φ = {σi}1≤i≤n. Initially, tag indices
and block indices are the same sequence 1, 2, . . . , n, so tag
computation can be simplified as σi = (H(i)·umi)α, and the
TPAR can easily construct his version of the index switch-
er. Then, the owner computes his signature on the index
switcher Sigc = Sigskc(seq0,Ω0), where seq0 is initialized
to 0 and Ω0 = {(i, ti = i)}1≤i≤n. Finally, the owner sends
{F,Φ, Sigc} to the CSP for storage and sends pk to the
TPAR. The owner deletes its local copy of {F,Φ} and keeps
the index switcher Ω.

Commitment. This process is to prevent a malicious
owner from generating incorrect tags at the initial stage so
that he can falsely accuse the cloud at a later time. The cloud
generates deterministic proof from all received blocks and
tags according to algorithm ProofGen and verify its validity
with algorithm ProofVerify. If the verification succeeds, the
cloud can be sure that all tags are correctly computed from
received blocks, and then he sends his signature on the
index switcher Sigs = Sigsks(seq0,Ω0) to the client for

storage, where seq0 = 0 and Ω0 = {(i, ti = i)}1≤i≤n. The
client also verifies the correctness of Sigs, if succeeds, he
keeps it; otherwise he contacts the TPAR for arbitration.

ProofGen. To audit the integrity of outsourced data,
a public auditor randomly picks a c-element subset I =
{s1, s2, . . . , sc} ⊆ {1, 2, . . . , n}, where elements in I refer
to the block indices of requested blocks. The auditor sends
a challenge request chal = {(i, vi)}i∈I to the server where
each vi ∈ Zp denotes a random coefficient used to compute
the proof.

On receiving the auditing challenge {(i, vi)}i∈I , the serv-
er computes the integrity proof as µ =

∑
i∈I vi · mi and

σ =
∏

i∈I σ
vi
i , where µ denotes the linear combination of

requested blocks and σ denotes the aggregated signature
of corresponding tags. Finally, the server sends the proof
π = (µ, σ) to the auditor for verification.

ProofVerify. On receiving the integrity proof π = (µ, σ),
the verifier firstly turns each block index i ∈ I into its
tag index ti using the index switcher and gets chal′ =
{(ti, vi)}i∈I . Then the verifier checks the correctness of the
proof by verifying whether the following equation holds:

e(σ, g)
?
= e((

∏
i∈I

H(ti)
vi) · uµ, v) (1)

If the equation holds, output TRUE, otherwise FALSE.
Update. A user updates the k-th block by performing

one of the following operations.

• Modification. The user modifies the k-th block mk

into m′
k. He allocates an unused tag index t′k for

the modified block m′
k and computes its new tag as

σ′
k = (H(t′k)·um′

k)α. Then the user updates the index
switcher to Ω′ and sends an update request up req =
{seq,O(M), k, t′k,m

′
k, σ

′
k, Q

′, Sigskc(seq,Ω
′)} to the

server, where m′
k and σ′

k refer to the modified
block and its new tag, O(M) denotes modifica-
tion, k and t′k denote the block index and its new
tag index, Ω′ is the updated index switcher, and
Q′ = {(i, vi)}i∈I∩k∈I is a small challenge set with
the modified block m′

k included.
• Insertion. The user inserts a new block at the k-

th position. He allocates an unused tag index t′k to
the new block m′

k and computes its tag as σ′
k =

(H(t′k) · um′
k)α. Then the user updates the index

switcher to Ω′ and sends an update request up req =
{seq,O(I), k, t′k,m

′
k, σ

′
k, Q

′, Sigskc(seq,Ω
′)} to the

server, where m′
k and σ′

k refers to the block to be
inserted and its tag, O(I) denotes insertion, k and
t′k denote the insertion position and the new block’s
tag index, Ω′ is the updated index switcher, and
Q′ = {(i, vi)}i∈I∩k∈I is a small challenge set with
the new block m′

k included.
• Deletion. The user deletes the block at the k-

th position. He updates the index switcher to
Ω′ and sends an update request up req =
{seq,O(D), k,Q′, Sigskc(seq,Ω

′)} to the server,
where O(D) denotes deletion and k specifies the
deletion position, Ω′ is the updated index switcher,
and Q′ = {(i, vi)}i∈I∩k∈I is a small challenge set
with the new block at the k-th position included
(since the k-th position is now occupied by the next

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

TMKS Infotech16
Highlight

6

block, we authenticate the deletion operation by au-
thenticating the new block at the k-th position).

Upon receiving up req, for block modification and in-
sertion, the CSP verifies the correctness of m′

k and σ′
k by

verifying e(σ′
k, g)

?
= e(H(t′k) · um′

k , v). If succeeds, the
CSP then verifies the correctness of Sigskc(seq,Ω

′) from
the client by updating his index switcher with the opera-
tion information in the update record. If both verification
succeed, for modification, the CSP replaces the old block
mk and its tag σk with the new block m′

k and its tag
σ′
k; for insertion, the CSP adds m′

k and σ′
k into F and

Φ respectively. Block deletion only involves the signature
verification, if succeeds, the CSP deletes the specified block
mk and its tag σk from F and Φ. Finally, the CSP computes
Sigsks(seq,Ω

′) using his private key, computes the integrity
proof π′ = (µ′, σ′) according to the small challenge set Q′,
and sends (µ′, σ′, Sigsks(seq,Ω

′)) to the user for update
verification.

UpdateVerify. On receiving the update request
(µ′, σ′, Sigsks(seq,Ω

′)), the user verifies the correctness of
(µ′, σ′) according to equation (1). Then he verifies the valid-
ity of the signature Sigsks(seq,Ω

′) using the CSP’s public
key. If both verification succeed, the user can be assured
that the CSP has indeed updated the block and its tag, then
he stores the CSP’s signature.

Update of the index switcher is as follows. For modifica-
tion, the user modifies the tag index of the k-th index pair
into t′k. For insertion, the user inserts the new index pair
(k, tk) at the k-th position, shifts all following pairs back-
ward a position and increments by one the block indices of
these pairs. For deletion, the user deletes the k-th index pair,
shifts all following pairs forward a position and decreases
by one the block indices of these pairs.

The protocols of data update (block modification, inser-
tion and deletion) all have the default integrity auditing
included in order to authenticate the update operation at
the server side (compared with the integrity check purpose
of the auditing scheme). Thus, we can choose the number
of challenged blocks to be a small number (e,g., c = 5) to
accelerate the speed of proof generation and verification.
Furthermore, the signature exchange in the Update and
UpdateVerify is to reach an agreement on the updated
metadata, i.e., the index switcher. The exchanged signature
signed by one party and kept by the other party is necessary
for later arbitration, where it is to reveal the metadata con-
firmation by both parties in the previous round of update,
as we will see it in the next section.

Discussion We assume a single-writer and many-readers
scenario in our scheme, that is, only the data owner can
dynamically update his outsourced data, while users just
have the read privilege. In this sense, multiple update
operations are executed in a serial manner, including the
access of the index switcher. However, if parallelization
technique is used to optimize the tag generation and proof
verification at the client side, then the access of the index
switcher may be a bottleneck of performance. A possible
way to solve this problem is to replicate [18], [19] the index
switcher across multiple users. Since the correctness of the
index switcher affects the auditing result, strong consistency
[20] among these replicas should be guaranteed. We leave

the implementation of such an optimized scheme as an
important future extension, which can be combined into the
design of a secure cloud storage system to cope with large
scale data more robustly and efficiently.

4 DISPUTE ARBITRATION

4.1 Overview
As we have pointed out before, in the cloud environment,
both clients and CSPs have the motive to cheat. In our
scheme, the index switcher is used by the auditor to obtain
tag indices for requested blocks at proof verification phase,
thus the verification result relies on the correctness of the
index switcher. However, the generation and update of
index switcher are performed by the data owner only, it will
potentially give a dishonest owner the opportunity of falsely
accusing an honest CSP. In this sense, we must provide some
mechanism to ensure the correctness of the index switcher
and further the fairness of possible arbitration, so that no
party can frame the other party without being detected.

A straightforward way is to let the arbitrator(TPAR)
keep a copy of the index switcher. Since the change of the
index switcher is caused by dynamic operations, the client
can send necessary update information (i.e., operation type,
operation position, new tag index) to the TPAR for each
update operation. With these information, the arbitrator
could re-construct the latest version of the index switcher,
whose correctness decides the validity of later arbitration.
However, such a solution costs O(n) storage at the arbitrator
side and needs the arbitrator to be involved in each update
operation. Ideally, we want the TPAR only undertake the
role of an arbitrator who involves only at dispute settlement,
and maintains a constant storage for state information, i.e.,
public keys of the client and the CSP.

As an alternative, we employ the signature exchange
idea in [12] to ensure the correctness of the index switcher.
Specifically, we rely on both parties exchanging their signa-
tures on the latest index switcher at each dynamic operation.
To resist replay attacks, a sequence number indicating the
update times is embedded in the signature.

A basic fact is that when the client initially uploads his
data to the cloud, the cloud needs to run the Commitment
to check the validity of outsourced blocks and their tags, and
afterwards their signatures on the initial index switcher are
exchanged. If this initial signature exchange fails, the client
would not assume his data being successfully uploaded. On
the other hand, the initial tag index sequence is the same
as the block index sequence, that is, the index switcher can
be denoted as {(i, i)}1≤i≤n. Hence, this step of signature
exchange, according to our design, can be easily completed
since the initial content of the index switcher is public to
both parties, which is a basis for later signature exchanges.
In this sense, our arbitration does not need the existence
of a fair signature exchange protocol in [12]. Moreover,
because the change of the index switcher is caused by
data update operations, the CSP can re-construct the latest
index switcher as long as necessary update information (i.e.,
op, k, t′k in each update record) are sent to the CSP upon
each update, which enables the CSP to check the client’s
signature and generate his own signature on the updated
index switcher.

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

7

Now, upon each data dynamic operation, besides ver-
ifying the updated blocks and tags, the CSP also checks
client’s signature on the updated index switcher. If succeeds,
the CSP sends his signature on the updated index switcher
to the client for storage. Then for each successful update,
each party holds the other party’s signature on the updat-
ed index switcher. Such a signature exchange implies an
agreement has been reached on the new metadata by the
two parties, which is necessary for later dispute resolution.
Moreover, the signature is generated on the concatenation of
a sequence number seq and the index switcher Ω, where seq
is a monotonically increasing integer that is incremented by
one each time.

Generally, a dispute may be caused by the disagreement
on the proof (including an updated block m′

k and its tag σ′
k

in an update request), or on the exchanged signature on the
index switcher. According to the time a dispute occurs, we
divide the arbitration occasion into three cases.

• Case 1: The dispute occurs when an auditor claims a
failure of proof verification during an auditing.

• Case 2: The dispute occurs when the CSP receives an
invalid update request up req from the client.

• Case 3: The dispute occurs when the client receives
an invalid response to up req from the CSP.

Case 1 only involves the disagreement of proof verifi-
cation, it occurs after a previous successful update where
an agreement on the index switcher has been made. While
case 2 and case 3 occur before the completion of the current
round of update and signature exchange, so the TPAR
should be engaged in the protocol to arbitrate on the dispute
and help to finish the update and signature exchange.

4.2 Arbitration on Integrity Proof
Let Sigc = Sigskc(seq,Ω) and Sigs = Sigsks(seq,Ω) de-
note client and CSP’s signatures on the index switcher in
the last successful update, where seq refers to the latest
sequence number. When a successful signature exchange
completes, the client has the signature Sigs of the server,
and the server has the signature Sigc of the client. During
the arbitration, seqc and seqs denote the sequence number
sent by the client and the CSP, Ωc and Ωs denote the index
switcher sent by them, respectively. We assume the public
key of each party is in some trusted PKI, hence it can be
easily obtained by the other party (including the TPAR).
And throughout our protocols, we assume the messages
transmitted among three parties are in an authenticated
secure channel.

We first describe the arbitration protocol of case 1, where
the dispute only involves proof disagreement. When the
client finds a failure of proof verification during an auditing,
he contacts the TPAR to launch an arbitration. Since verify-
ing proof validity needs to access the index switcher to get
tag indices of challenged blocks, and verifying signatures
also needs the index switcher, it is necessary for each party
to send the TPAR the latest index switcher he has kept, along
with the signature (on the index switcher) signed by the
other party. The arbitration protocol proceeds as follows.

1) The TPAR requests {seqc,Ωc, Sigs} from the client.
Then he checks the signature Sigs of the CSP. If

it is invalid, the TPAR may punish the client for
misbehaving; otherwise the TPAR proceeds.

2) The TPAR requests {seqs,Ωs, Sigc} from the CSP.
Then he checks the signature Sigc of the client. If
the signature does not verify correctly, the TPAR
may punish the CSP for misbehaving; otherwise the
TPAR proceeds.

3) If seqc = seqs, then the TPAR requests from the
client the challenged set Q that causes dispute on
proof verification and retransmit it to the CSP to
run the auditing scheme. The CSP computes the
proof according to ProofGen and returns it to the
TPAR for verification. The TPAR checks the proof
according to ProofVerify using the verified index
switcher.

4) If there is a mismatch in seqc and seqs. The TPAR
can be sure that the party who gives a smaller
sequence number is performing an replay attack,
he may punish the cheating party. Specifically, if
seqc > seqs, the client is cheating by replaying an
old signature from the CSP; if seqs > seqc, the CSP
is cheating by replaying an old signature from the
client.

The security of this protocol relies on the security of the
signature scheme used to sign the index switcher, that is,
each party has only negligible probability to forge a signa-
ture signed with the other party’s private key. Therefore,
what should be prevented in the protocol is possible replay
attacks launched by a malicious party. As we have included
a sequence number in the exchaned signature for each
update, we can check whether a replay attack is launched
or not by sequence number match. If both signatures verify
correctly and their sequence numbers match (seqc = seqs)
then we have Ωc = Ωs. Due to the initial signature exchange
on (0,Ω0) in TagGen and Commitment, there is at least one
round of successful signature exchange before a conflict on
proof verification occurs.

4.3 Arbitration on Dynamic Update
Case 2 and case 3 involves the failure of a signature ex-
change in the current round of update, so it is necessary
for the TPAR to help to complete the update and signature
exchange. To accomplish this, the successfully exchanged
signatures in the previous round should be verified to
proceed the current round.

The first two steps of the protocol is the same as that
of the arbitration protocol on integrity proof, the TPAR re-
quests {seqc,Ωc, Sigs} from the client and {seqs,Ωs, Sigc}
from the CSP. If the TPAR finds any invalid signature, he
punishes the corresponding party. According to the result
of sequence number comparison (seqc and seqs), we divide
the protocol into two situations.

The sequence numbers match(seqc = seqs).

1) The TPAR requests the update record {seqc +
1, op, k, t′k,m

′
k, σ

′
k, Q

′} from the client.
2) For block modification and insertion, the TPAR

verifies the correctness of (t′k,m
′
k, σ

′
k) by verifying

e(σ′
k, g)

?
= e(H(t′k) · um′

k , v). If fails, the TPAR may
punish the client for cheating; otherwise, the TPAR

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

8

is convinced that the updated block and its tag are
consistent with each other. For block deletion, this
step can be omitted.

3) The TPAR transmits {seqc + 1, op, k, t′k,m
′
k, σ

′
k, Q

′}
to the CSP, and requests (µ′, σ′) on the small chal-
lenge set Q′ from the CSP. Then he verifies the valid-
ity of µ′ and σ′ according to algorithm ProofVerify.
If fails, the TPAR may punish the CSP for denying
the update; otherwise, the TPAR proceeds.

4) The TPAR updates the index switcher to Ω′, then
he requests and verifies new signatures Sig′c =
Sigskc(seqc+1,Ω′) and Sig′s = Sigsks(seqs+1,Ω′)
from both parties. The TPAR may punish the party
who sends an invalid signature. If both signatures
verify, the TPAR forwards Sig′c to the CSP, and Sig′s
to the client.

Now the update has been successfully completed with
the help of the TPAR, and new signatures on the updated
index switcher are successfully exchanged. The client and
the CSP can proceed in the next round of update.

The sequence numbers mismatch (seqc ̸= seqs).

1) seqc < seqs. The server is cheating by replaying an
old signature from the client.

2) seqc > seqs + 1. The client is cheating by replaying
an old signature from the CSP.

3) seqc = seqs + 1. This occurs when the CSP receives
the client’s update request and refuses to update
and send his signature to the client. There are three
possibilities here. (i) The update record from the
client is invalid (inconsistent block-tag pair but with
valid signature on the updated index switcher), so
the CSP refuses to update and contacts the TPAR for
arbitration. (ii) The update record from the client is
valid, but the CSP responds with invalid signature,
so the client contacts the TPAR for arbitration. (iii)
The update record from the client is valid, but the
CSP maliciously denies the update, so the client
contacts the TPAR for arbitration.

For the denial-of-update case(seqc = seqs + 1), it is
difficult for the TPAR to decide which party is responsible
for the update failure. Because each party can behave mali-
ciously to the other party and behave friendly to the TPAR,
e.g., the client can send an incorrect update record to the
CSP in the current round and send a correct update record to
the TPAR in the following arbitration. In this case, the TPAR
simply runs the protocol of match situation (seqc = seqs)
to finish the update and signature exchange in the current
round, so that both parties can proceed with further rounds
of auditing or update.

4.4 Discussion

In our arbitration protocol, each party needs to send his
signature on the latest metadata (the sequence number and
the index switcher) to the other party. Actually, letting just
one party sign the index switcher and the other party only
sign the sequence number is also feasible, e.g., the client’s
signature is Sigc = Sigskc(seqc,Ωc) and the CSP’s signature
is Sigs = Sigsks(seqs). Then during an arbitration, the

client sends {seqc, Sigs} to the TPAR and the CSP sends
{seqs,Ωs, Sigc} to the TPAR.

In our design, the index switcher contains block-tag in-
dex pairs for all blocks, whose size is linear to the number of
blocks. To achieve stateless arbitration at the TPAR, during
an arbitration, each party has to send his version of the
index switcher to the TPAR for signature verification, which
brings O(n) communication overhead for a dispute arbitra-
tion. Fortunately, although both parties have the potential
possibility to misbehave, we still can assume such disputes
are occasionally, or at least not frequently. After all, each
party has some basic trust toward the other party, otherwise
they can not cooperate together to store and manage clien-
t’s outsourced data. In this sense, the arbitration protocol
is to arbitrate possible disputes, the O(n) communication
may not be so serious a problem in terms of the service-
oriented characteristic of cloud storage. On the other hand,
the cheating party should be severely punished to reduce
the possibilities of future misbehavior.

5 SECURITY ANALYSIS

In this section, we prove the security of our auditing scheme
and arbitration protocol by proving the following two the-
orems. Theorem 1 adapts similar definitions of correctness
and soundness in [5]: (i) The scheme is correct if the veri-
fication algorithm accepts when interacting with the valid
prover who returns a valid response. (ii) The scheme is
sound if any cheating prover that convinces the verification
algorithm that it is storing a file is actually storing that file.
Theorem 2 proves the fairness of our arbitration protocols
by proving that both the owner and the CSP have negligible
probability to frame the other party in the protocol.

Theorem 1. If the two signature schemes used for block tags
and index switcher are existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, then
no adversary against the soundness of our scheme could cause
the verifier to accept in an auditing protocol instance with non-
negligible probability, except by responding with correct proof.

Proof: Since each tag index is a globally unique in-
teger, without loss of generality, the index mapping from
a block index i ∈ {1, 2, ..., n} to its tag index ti ∈ N can
be regarded as an injective function. Thus, the hash query
of block index in [5] is similar to that of tag index in our
scheme. We now prove theorem 1 in the random oracle
model by using a series of games defined in [5]. Game 0
is simply the challenge game where the adversary can make
store queries and undertake PoS protocol executions with
the environment. Game 1 is the same as Game 0, except that
the challenger keeps a list of all signed tags ever issued as
part of a PoS protocol query. Game 2 is the same as Game
1, except that the challenger keeps a list of its responses to
queries from the adversary.

Suppose Q = (i, vi)i∈I is the query that causes the
adversary wins the game. Let P = {µ, σ, Sigsks(seq,Ω)} be
the expected response from an honest prover, which satisfies
the following equation e(σ, g) = e((

∏
i∈I H(ti)

vi) · uµ, v).
Since the index switcher Ω is actually kept by both the
client and the CSP, the verification will fail if the adver-
sary gives an invalid signature. Thus, the signature on the

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

9

index switcher of the forged proof should be the same
with that of the expected proof. Assume the adversary’s
response is P ′ = {µ′, σ′, Sigsks(seq,Ω)}, which satisfies
e(σ′, g) = e((

∏
i∈I H(ti)

vi) · uµ′ , v). Obviously, we have
µ ̸= µ′, otherwise we will have σ = σ′, which contradicts
our assumption.

Define ∆µ = µ′ − µ, now we can construct a simulator
to solve the computational Diffie-Hellman problem. Given
(g, gα, h) ∈ G, the simulator is to output hα. The simulator
sets v = gα, randomly picks ri, β, γ ∈ Z∗

p and sets u =
gβ ·hγ . Then the simulator answers hash queries as H(ti) =
gri/(gβ·mi · hγ·mi), and answers signing queries as σi =
(gri)α. Finally, the adversary outputs π′ = (µ′, σ′). From
the above two equations, we can obtain

e(σ′/σ, g) = e(u∆µ, v) = e((gβ · hγ)∆µ, v)

From this equation, we have

e(σ′ · σ−1 · (gα)−β·∆µ, g) = e((hγ)∆µ, gα)

= e((hα)γ∆µ, g)

Further, we get hα = (σ′ ·σ−1 ·(gα)−β∆µ)1/(γ∆µ). Since γ
is randomly chosen from Z∗

p by the challenger, and is hidden
from the adversary, the probability of γ∆µ = 0 mod p will
be 1/p, which is negligible.

Game 3 is the same as Game 2, with one differ-
ence: if in any PoS instances the adversary succeeds
(cause the challenge to abort) and the adversary’s response
{µ′, σ′, Sigsks(seq,Ω)} to query is not equal to the expected
response {µ, σ, Sigsks(seq,Ω)}, the challenger declares fail-
ure. And in Game 2, we have proved that σ′ = σ, and the
signature on the index switcher is the same, so it is only the
values µ′ and µ can differ. Define ∆µ = µ′ − µ, we have

e(σ′, g) = e((
∏
i∈I

H(ti)
vi) · uµ′

, v)

= e(σ, g)

= e((
∏
i∈I

H(ti)
vi) · uµ, v)

From this equation, we have uµ′
= uµ and 1 = u∆µ.

So we have ∆µ = 0 mod p. As analyzed above, there is
only negligible difference between the adversary’s success
probabilities in these games. This completes the proof.

Theorem 2. Assume the signature scheme used for signing the
index switcher is secure against existential forgery, and the default
auditing scheme is secure, then the arbitration protocols provide
secure and fair arbitration, that is, neither the client nor the
CSP can succeed in framing the other party with non-negligible
probability.

Proof: Firstly, we prove the correctness of our ar-
bitration protocol. Let Sigc(i,Ωi) and Sigs(i,Ωi) denote
signatures (on the index switcher) signed by the client and
the CSP, where Ωi denote the i-th version of index switcher.

Recall that when the client uploads his data to the cloud,
there is an initial signature exchange between the client and
the CSP, where the sequence number is initialized to 0 and
the index switcher is Ω0 = {(i, ti = i)}1≤i≤n. Moreover, the
uploaded blocks and tags have to be verified by the CSP
using ProofVerify to ensure the consistency between blocks

and tags. Since our scheme is public verifiable, and the ini-
tial content of the index switcher is also public, so even the
CSP or the client misbehave in this step, it can be arbitrated
by the TPAR, and finally the initial signature exchange can
be successfully finished. After the initial exchange, the client
has Sigs(0,Ω0) and the CSP has Sigc(0,Ω0). On the other
hand, during each update, the update related information
(operation type, operation position, new tag index) are sent
to the CSP. Hence, the CSP is aware of the update of the
index switcher and can re-construct it upon each update,
which enable the CSP to check the validity of client’s signa-
ture (on the index switcher).

We proceed by including several rounds of up-
date and signature exchange. Assume the client has
successfully finished i(i ≥ 2) updates so far. With-
out loss of generality, the client successively has
Sigs(0,Ω0), Sigs(1,Ω1), . . . , Sigs(i,Ωi), and the CSP suc-
cessively has Sigc(0,Ω0), Sigc(1,Ω1), . . . , Sigc(i,Ωi).

Now we analyze the situation where the signature ex-
change can not be normally finished. Normally, when the
client performs the next update, he increments the se-
quence number and updates the index switcher to Ωi+1, and
sends an update record {i+ 1, op, k, t′k,m

′
k, σ

′
k, Q

′, Sigc(i+
1,Ωi+1)} to the CSP. The CSP replies with (µ′, σ′, Sigs(i +
1,Ωi+1)). Note in the update request, the correctness of
Sigc(i + 1,Ωi+1) depends on the correctness of (i +
1, op, k, t′k) and the index switcher Ωi in the last successful
update. And the correctness of σ′

k depends on the correct-
ness of t′k and m′

k. Due to the potential misbehavior of both
parties, there are five possibilities here.

1) The client sends an invalid update request contain-
ing inconsistent mk, σk and invalid Sigc(i+1,Ωi+1)
to the CSP. The CSP certainly denies the update
and contacts the TPAR for update arbitration. In this
case, when the TPAR requests the latest signatures
from both parties, we have seqc = seqs = i.

2) The client sends an invalid update request contain-
ing inconsistent mk, σk and valid Sigc(i + 1,Ωi+1)
to the CSP. The CSP denies the update and contacts
the TPAR for update arbitration. In this case, when
the TPAR requests the latest signatures from both
parties, we have seqc = seqs + 1.

3) The client sends a valid update request to the C-
SP but the CSP replies with an invalid signature
Sigs(i+ 1,Ωi+1) (possibly with inconsistent µ′ and
σ′). The client contacts the TPAR for update arbitra-
tion. In this case, when the TPAR requests latest sig-
natures from both parties, we have seqc = seqs + 1.

4) The client sends a valid update request to the CSP,
the CSP replies with a valid signature Sigs(i +
1,Ωi+1) and inconsistent µ′ and σ′. The client con-
tacts the TPAR for proof arbitration. In this case,
when the TPAR requests latest signatures from both
parties, we have seqc = seqs.

5) The client sends a valid update record to the CSP,
but the CSP denies the update. This case is similar
to the third case, the client contacts the TPAR for
arbitration. And when the TPAR requests latest sig-
natures from both parties, we have seqc = seqs + 1.

According to the protocol of update arbitration, we can

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

10

see that even the client or the CSP misbehave in the current
round of update, the TPAR still can help to finish the (i+1)-
th round of update and signature exchange. And after the
arbitration, the CSP has Sigc(i+ 1,Ωi+1) and the client has
Sigs(i+1,Ωi+1). This completes the proof of correctness of
the arbitration protocol.

Secondly, we prove the fairness of the arbitration proto-
col. If a malicious party wants to frame an honest party, he
has to forge a valid signature of the honest party using a
sequence number larger than the agreed one in the last suc-
cessful update. Assume the sequence number and the index
switcher in the last successful round of update are seq and
Ω. The client has Sigs(seq,Ω) and the CSP has Sigc(seq,Ω).
For the client, if he intends to frame the CSP, then he has
to forge a valid signature Sigs(seq

′,Ω′), where seq′ > seq
and Ω′ ̸= Ω. For the CSP, if he intends to frame the client,
then he has to forge a valid signature Sigc(seq

′′,Ω′′), where
seq′′ > seq + 1 and Ω′′ ̸= Ω. Both cases contradict the
existential unforgeability of the signature scheme used for
signing the index switcher. Therefore, if the malicious party
can forge such a signature with non-negligible probability,
then he can break the security of the signature scheme
(used for signing the index switcher) with non-negligible
probability. This completes the proof of fairness.

6 PERFORMANCE EVALUATION

Our scheme is implemented using C language on a Linux
system equipped with a 4-Core Intel Xeon processor run-
ning at 2.4GHz, 4GB RAM and a 7200 RPM 2TB drive. Al-
gorithms are implemented using the Pairing-Based Crypto-
graphic (PBC) library 0.5.11 and the crypto library OpenSSL
1.0.0. For security parameters, we choose the curve group
with a 160-bit group order and the size of modulus is 1024
bits. Our scheme provides probabilistic proof as [4]: if t
fraction of the file is corrupted, by challenging a constant c
blocks of the file, the auditor can detect the data corruption
behavior at least with probability p = 1 − (1 − t)c. We
choose c = 460, thus the detection probability is about 99%.
The integrity proof is of constant size as in [5]. While most
authenticated structure based schemes [6], [9], [11] need
to send auxiliary authentication information to the auditor,
which leads to linear communication overhead. The size of
the test data is 10 GB, and the block size of fragmentation
varies from 2 KB to 1 MB. All results are on the average of
10 trials.

We measure the performance of our auditing scheme
from three aspects: tag generation time, proof generation
time and proof verification time. For data dynamic update
and dispute arbitration, we test the update overhead by
inserting, deleting and modifying 100 blocks and tags. In
addition, we test the cost of signature computation and
verification with the index switcher containing different
number of index pairs (from 5 × 211 to 5 × 220), and the
shifting overhead of index pairs caused by block insertion
and deletion.

6.1 Tag computation
For each block size(from 2KB to 1MB), we firstly fragment
the data file into multiple blocks and generate their tags,

2 4 8 16 32 64 128 256 512 1024
0

5

10

15

20

25

30

35

40

tim
e

co
st

 (s
)

block size (KB)

 proof computation
 proof verification
 proof verification + index search

Fig. 3. Cost of proof generation and verification.

then we store these blocks and tags into small files, e.g.,
when block size is 2KB, the original data file corresponds to
5 × 220 block files and 5 × 220 tag files. And we allocate a
storage node to store the block files and their tags for each
block size.

According to our tag computation formula σi = (H(ti) ·
umi)α, we can see that each tag generation involves two
exponentiations, first with mi then with user’s secret key α,
which are the main overhead for computing a tag. For same
size data, bigger block fragmentation means less tag files
and therefore less exponentiations. As illustrated in Table
1, the cost of tag computation for the same file decreases
almost linearly with the increase of block size. On the other
hand, we test the overhead of tag generation for 1-GB data
and 10-GB data, and we find for each block size, the tag
generation overhead of the 10-GB file is nearly 10 times
of that of the 1-GB file, which also demonstrates that the
number of exponentiations dominate the tag generation
overhead.

When block size is small, the cost is really heavy, e.g.,
when the block size is 2KB, the tag generation overhead
for 10-GB file is nearly 18 hours. The reason is that small
fragmentation means a large number of exponentiations.
But when the block size exceeds 32KB, the tag generation
time decreases fast, e.g., when block size is 512 KB, it costs
52 seconds and 528 seconds for 1-GB data and 10-GB data,
respectively. Therefore it is better to choose a big block
size for data fragmentation to audit large-size data files.
Fortunately, for any data file to be outsourced to the cloud,
tag generation phase happens only once.

6.2 Proof computation and verification.

Proof generation needs to access c = 460 randomly se-
lected block files and corresponding tag files to compute
µ =

∑
i∈I vi · mi and σ =

∏
i∈I σ

vi
i , where computing µ

involves c multiplications and c additions on Zp, and com-
puting σ involves c exponentiations and c multiplications
on group G1. In addition to these computations, there are
also two other factors having influence on the overhead of
proof generation: one is the search time for a specific file in
a directory, the other is the I/O cost of reading 460 block

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

11

TABLE 1
Tag generation time cost with different block size

Block size 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

1GB data (s) 6284 3146 1570 791 409 220 122 75 52 38
10GB data (s) 63489 35445 15734 8096 4206 2127 1167 715 528 408

files and 460 tag files from a storage node. The I/O cost of
reading 460 block files is linear to the block size, and reading
460 tag files incur a constant overhead, since each tag file is
fixed (128 bytes). Furthermore, the sampling strategy of the
auditing challenge makes the access of block and tag files
randomly, so the principle of locality in I/O access does not
work well.

Fig.3 illustrates the cost of proof generation and verifica-
tion in our scheme. It can be observed that when the block
size is small, i.e., less than 8 KB, the cost decreases fast. This
is mainly because the search time for a specific block or tag
file is large at small block size. For the same file, small block
size means a large number of block and tag files, e.g., 2 KB
fragmentation corresponds to 5 × 221 block and tag files
totally. In contrast, the I/O cost of reading 460 block files
and 460 tag files are relative small, e.g., for 2KB block size,
the I/O overhead is about reading 978 KB data in total. With
the growth of the block size, on one hand, the search time
for a specific file decreases, and on the other hand, the I/O
overhead for reading 460 block files increases. These two
reasons explain why the cost curve remains relatively stable
and achieves an optimal value in the range of 16 KB to 256
KB. But when the block size exceeds 256 KB, the cost begins
to increase, the reason is that the I/O overhead has a greater
influence (e.g., 460 MB for 460 blocks with block size being
1024KB) than the file search time.

The overhead of proof verification can be divided into
two parts: the search cost of tag indices for challenged
blocks, and the cost of verifying the proof validity according
to equation (1). In implementation, for each block size, we
write all the index pairs into a file for storage, thus the
fragmentation size decides the number of index pairs in
the index switcher. To optimize the search time for tag
indices, we sort the indices of challenged blocks before
searching. The bottom two curves in Fig. 3 show the proof
verification overhead with and without the index search
cost, we can see they are very close to each other, except
that when block size is less than 8 KB, the index search
cost is non-negligible, which takes about 20% and 13% in
total overhead for 2 KB and 4 KB respectively. But when
block size exceeds 8 KB, both curves remain steady, because
then the main overhead are the bilinear pairing operations
and exponentiations involved in proof verification, which
are independent of the block size.

6.3 Update and arbitration

For data dynamics, we test the overhead of inserting, delet-
ing and modifying 100 blocks and corresponding tags, as
illustrated in Fig. 4. We find the curves of insertion and
modification are very close to each other. This is because
both inserting and modifying a block needs to compute a
new tag, then write the updated block and tag to the storage

2 4 8 16 32 64 128 256 512 1024 --
0

2

4

6

8

10

12

14

16

18

tim
e

co
st

 (s
)

block size (KB)

 insert 100 blocks & tags
 delete 100 block & tags
 modify 100 blocks & tags

Fig. 4. Cost of block and tag update.

device. When the block size increases, the I/O overhead also
increases. This explains why inserting 100 2-KB blocks costs
only 1.5 seconds while inserting 100 1024-KB blocks costs
16.5 seconds. The deletion curve in Fig. 4 remains steady,
with the cost being about 0.2 seconds.

On the other hand, data update and dispute arbitration
involve the computation and verification of the signature
on the index switcher Ω, whose size is linear to the number
of block-tag index pairs. We allocate 4 bytes for each block
index and 8 bytes for each tag index, thus the size of the
index switcher is 12n bytes, where n denotes the number of
blocks. For same amount of data, the value n is inversely
proportional to the block size used for fragmentation. As
illustrated in Table 2, for a 10-GB data file, the size of
the index switcher is 60MB when block size is 2 KB, and
decreases to 120KB when block size is 1024 KB.

In implementation, we write the content of the index
switcher into a file for storage. Thus, computing or verifying
the signature on the index switcher needs to read its content
from the file. Table 2 illustrates the efficiency of computing
and verifying the signature on the index switcher, with the
number of index pairs varying from 5 × 211 to 5 × 220

. When the index switcher contains 5 × 220 index pairs,
both signature computation and verification cost about 200
miliseconds, and this cost almost decreases linearly with
the reduction of index pairs. Moreover, dynamic update
(block insertion and deletion) will cause index pairs of all
subsequent blocks (after the operation position) to be shifted
backward or forward a position. We test the overhead of
updating index switcher by shifting all index pairs through
insertion and deletion, e.g., shifting 5 × 220 index pairs
incurs a cost about 46.5 miliseconds. Even we include the
overhead of reading all index pairs from the file and the

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

12

TABLE 2
Time cost of signature (on the index switcher) generation and verification

Block size 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1024KB

Number of index pairs 5× 220 5× 219 5× 218 5× 217 5× 216 5× 215 5× 214 5× 213 5× 212 5× 211

Size of index switcher 60 MB 30 MB 15 MB 7.5 MB 3.75 MB 1.875 MB 960 KB 480 KB 240 KB 120 KB
Read index switcher (ms) 285.0 155.1 68.7 18.3 9.5 4.0 0.2 0.09 0.05 0.03
Signing index switcher (ms) 201.1 100.8 50.9 26.0 13.5 7.2 4.1 2.6 1.8 1.4
Signature verification (ms) 198.8 99.5 50.1 24.8 12.5 6.3 3.2 1.7 0.9 0.5
Shifting all index pairs (ms) 46.5 24.3 11.7 6.2 3.2 1.8 1.0 0.5 0.2 0.1

overhead of shifting index pairs, for 2-KB fragmentation,
the overhead of signing and updating the index switcher is
about 533 seconds, which shows our additional overhead
of data dynamics is acceptable. Further, the evaluation also
shows the scalability of our scheme, with the block size
being 512 KB and the number of index pairs being 5 × 220,
the total auditing data can be 2.5 TB.

7 RELATED WORK

Remote integrity check could be sourced to memory check
schemes [21], [22] that aim to verify read and write opera-
tions to a remote memory. Recently, many auditing schemes
[1], [2], [23], [24], [25], [26] have been proposed around
checking the integrity of outsourced data.

Deswarte et al. [1] and Filho et al. [2] use RSA-based
hash functions to check a file’s integrity. Although their ap-
proaches allow unlimited auditing times and offer constant
communication complexity, their computation overhead is
too expensive because their schemes have to treat the whole
file as an exponent. Opera et al. [23] propose a scheme
based on tweakable block cipher to detect unauthorized
modification of data blocks, but verification needs to re-
trieve the entire file, thus the overhead of data file access
and communication are linear with the file size. Schwarz et
al. [24] propose an algebraic signature based scheme, which
has the property that the signature of the parity block equals
to the parity of the signatures on the data blocks. However,
the security of their scheme is not proved. Sebe et al. [26]
provide an integrity checking scheme based on the Diffie-
Hellman problem. They fragment the data file into blocks of
the same size and fingerprint each data block with an RSA-
based hash function. But the scheme only works when the
block size is much larger than the RSA modulus N , and it
still needs to access the whole data file. Shah et al. [7], [27]
propose a privacy-preserving auditing protocol that allows
a third party auditor to verify the integrity of remotely
stored data and assist to extract the original data to the
user. As their scheme need firstly encrypt the data and pre-
compute a number of hashes, the number of auditing times
is limited and it only works on encrypted data. Furthermore,
when these hash values are used up, the auditor has to re-
generate a list of new hash values, which leads to extremely
high communication overhead.

From above analysis, it can be seen that earlier schemes
usually generate a deterministic proof by accessing the
whole data file, thus their efficiency is limited due to the
high computation overhead. To address this problem, later
schemes tend to generate a probabilistic proof by accessing

part of the date file. Jules et al. [3], [28] propose a proofs of
retrievability (PoR) model, where spot-checking and error-
correcting code are used to guarantee the possession and
retrievability of remote stored data. However, PoR can only
be applied to encrypted data, and the number of auditing
times is a fixed priori due to the fact that sentinels embed-
ded in the encrypted data could not be reused once revealed.
Dodis el al. identify several other variants of PoR in [29].
Ateniese et al. [4] are the first to put forward the notion
of public verifiability in their provable data possession
(PDP) scheme, where the auditing tasks can be delegated
to a third-party auditor. In PDP, they propose to randomly
sample a few data blocks to obtain a probabilistic proof,
which greatly reduces the computation overhead. Moreover,
PDP scheme allows unlimited number of auditing. Shacham
et al. [5] design an improved PoR scheme and provide strict
security proofs in the security model defined in [3], they
use homomorphic authenticators and provable secure BLS
signatures [30] to achieve public verifiability, which is not
provided in Jules’ main PoR scheme. Some other schemes
[7], [14], [31] with public auditability aim to provide privacy
protection against information leakage toward a third-party
auditor in the process of integrity auditing.

However, all above-mentioned schemes are designed
for static data only, direct extension of these schemes to
support data dynamics may suffer from security problems,
as analyzed in [14]. But in cloud environment, remotely
stored data may not only be read but also be updated
by users, which is a common requirement. In this sense,
schemes can only audit static data is insufficient and lacks
of practicability.

To support data dynamics in auditing schemes, Ateniese
et al. [32] propose a dynamic version of their original PDP
scheme using symmetric encryption, however, the number
of auditing times is limited and fully block insertion is
not supported (only append-type insertion is supported).
Erway et al. [9] firstly propose to construct a fully dynamic
provable data possession (DPDP) scheme. To eliminate the
index limitation of tag computation in original PDP scheme
and avoid tag re-computation brought by data dynamics,
they use the rank of a skip list node (similar to block index)
to uniquely differentiate among blocks and authenticate the
tag information of challenged blocks before proof verifica-
tion. However, the skip list in essence is an authenticated
structure used to test set-membership for a set of elements.
To prove the membership of a specific node, a verification
path from the start node to the queried node must be
provided, its communication cost is linear to the number

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

13

of challenged blocks. Moreover, there’s no explicit imple-
mentation of public verifiability given for their scheme.

Qian Wang et al. [6] combine BLS signature based ho-
momorphic authenticator with Merkle hash tree to provide
both public auditability and fully dynamic operations sup-
port. Specifically, their scheme constructs a Merkle hash tree,
stores the hashes of tags in the leaf nodes and recursively
computes the root and signs it, which is used to authenticate
the tags of challenged blocks. Furthermore, they eliminate
the index limitation in tag computation by using H(mi)
to replace H(name||i) in [5], which requires blocks to be
different with each other. However, such a requirement
on data blocks is not appropriate since the probability of
block resemblance increases when block size decreases. In
addition, due to the authentication of challenged blocks
with a Merkle Hash Tree [33], the communication cost of
their scheme is also linear to the number of requested blocks.
Zhu et al. [10], [34] use index-hash table to construct their
dynamic auditing scheme based on zero-knowledge proof,
which is similar to our index switcher in terms of index dif-
ferentiation and avoidance of tag re-computation. But their
design mainly focuses on data dynamics support, while
our scheme goes further by achieving dynamic operations
support and fair arbitration together.

Recently, providing fairness and arbitration in auditing
schemes has become an important trend, which extends and
improves the threat model in early schemes to achieve a
higher level of security insurance. Zheng et al. [11] construct
a fair and dynamic auditing scheme to prevent a dishonest
client accusing an honest CSP. But their scheme only realizes
private auditing, and is difficult to be extended to support
public auditing. Kupcu [12] proposes a framework on top of
Erway’s DPDP scheme [9], where the author designs arbitra-
tion protocols on the basis of fair signature exchange proto-
cols in [13]. Moreover, the author goes further by designing
arbitration protocols with automated payments through the
use of electronic cash. Compared to these schemes, our work
is the first to combine public verifiability, data dynamics
support and dispute arbitration simultaneously.

Other extensions to both PDPs and PoRs are given
in [35], [36], [37], [38], [39]. Chen et al. [37] introduce a
mechanism for data integrity auditing under the multi-
server scenario, where data are encoded with network code.
Curtmola et al. [35] propose to ensure data possession of
multiple replicas across the distributed storage scenario.
They also integrate forward error-correcting codes into PDP
to provide robust data possession in [36]. Wang et al. [39]
utilize the idea of proxy re-signatures to provide efficient
user revocations, where the shared data are signed by a
group of users. And in [16], [38], they exploit ring signatures
to protect the identity-privacy of signers from being known
by public verifiers during the auditing.

8 CONCLUSION

The aim of this paper is to provide an integrity auditing
scheme with public verifiability, efficient data dynamics
and fair disputes arbitration. To eliminate the limitation
of index usage in tag computation and efficiently support
data dynamics, we differentiate between block indices and
tag indices, and devise an index switcher to keep block-tag

index mapping to avoid tag re-computation caused by block
update operations, which incurs limited additional over-
head, as shown in our performance evaluation. Meanwhile,
since both clients and the CSP potentially may misbehave
during auditing and data update, we extend the existing
threat model in current research to provide fair arbitration
for solving disputes between clients and the CSP, which is
of vital significance for the deployment and promotion of
auditing schemes in the cloud environment. We achieve this
by designing arbitration protocols based on the idea of ex-
changing metadata signatures upon each update operation.
Our experiments demonstrate the efficiency of our proposed
scheme, whose overhead for dynamic update and dispute
arbitration are reasonable.

ACKNOWLEDGMENTS

Firstly, the authors would like to thank the anonymous ref-
erees for their reviews and insightful suggestions to improve
this paper. Secondly, the work is supported in part by the
National Basic Research Program (973 Program) of China
under Grant No.2011CB302305, and the National Natural
Science Foundation of China under Grant No.61232004. This
work is also sponsored in part by the National High Tech-
nology Research and Development Program (863 Program)
of China under Grant No.2013AA013203.

REFERENCES

[1] Y. Deswarte, J.-J. Quisquater, and A. Saı̈dane, “Remote integrity
checking,” in Proc. 5th Working Conf. Integrity and Intl Control in
Information Systems, 2004, pp. 1–11.

[2] D. L. Gazzoni Filho and P. S. L. M. Barreto, “Demonstrating data
possession and uncheatable data transfer.” IACR Cryptology ePrint
Archive, Report 2006/150, 2006.

[3] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for
large files,” in Proc. 14th ACM Conf. Computer and Comm. Security
(CCS07), 2007, pp. 584–597.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proc. 14th ACM Conf. Computer and Comm. Security (CCS07),
2007, pp. 598–609.

[5] H. Shacham and B. Waters, “Compact proofs of retrievability,”
in Proc. 14th Intl Conf. Theory and Application of Cryptology and
Information Security: Advances in Cryptology (ASIACRYPT 08), 2008,
pp. 90–107.

[6] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud com-
puting,” in Proc. 14th European Conf. Research in Computer Security
(ESORICS 08), 2009, pp. 355–370.

[7] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving
audit and extraction of digital contents.” IACR Cryptology ePrint
Archive, Report 2008/186, 2008.

[8] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable
secure cloud data storage services,” Network, IEEE, vol. 24, no. 4,
pp. 19–24, 2010.

[9] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. 16th ACM Conf. Computer and
Comm. Security (CCS 09), 2009, pp. 213–222.

[10] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic
audit services for integrity verification of outsourced storages in
clouds,” in Proc. ACM Symp. Applied Computing (SAC 11), 2011, pp.
1550–1557.

[11] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,”
in Proc. 1st ACM Conf. Data and Application Security and Privacy
(CODASPY 11), 2011, pp. 237–248.

[12] A. Küpçü, “Official arbitration with secure cloud storage applica-
tion,” The Computer Journal, pp. 138–169, 2013.

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

14

[13] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange
of digital signatures,” in Proc. 17th Intl Conf. Theory and Applications
of Cryptographic Techniques: Advances in Cryptology (EUROCRYP-
T98), 1998, pp. 591–606.

[14] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[15] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” IEEE Trans.
Computers, vol. 62, no. 2, pp. 362–375, 2013.

[16] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public au-
diting for shared data in the cloud,” IEEE Trans. Cloud Computing,
vol. 2, no. 1, pp. 43–56, 2014.

[17] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Proc. 22nd
Intl Conf. Theory and Applications of Cryptographic Techniques: Ad-
vances in Cryptology (EUROCRYPT03), 2003, pp. 416–432.

[18] P. A. Bernstein and N. Goodman, “An algorithm for concurrency
control and recovery in replicated distributed databases,” ACM
Trans. Database Systems, vol. 9, no. 4, pp. 596–615, 1984.

[19] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Low-overhead
byzantine fault-tolerant storage,” in ACM SIGOPS Operating Sys-
tems Review, vol. 41, no. 6, 2007, pp. 73–86.

[20] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of
replication and a solution,” in ACM SIGMOD Record, vol. 25, no. 2,
1996, pp. 173–182.

[21] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, “Check-
ing the correctness of memories,” Algorithmica, vol. 12, no. 2-3, pp.
225–244, 1994.

[22] M. Naor and G. N. Rothblum, “The complexity of online memory
checking,” in Proc. 46th Ann. IEEE Symp. Foundations of Computer
Science, 2005, pp. 573–582.

[23] A. Oprea, M. K. Reiter, and K. Yang, “Space-efficient block storage
integrity.” in Proc. 9th Network and Distributed System Security
Symp. (NDSS ’05), 2005.

[24] T. S. Schwarz and E. L. Miller, “Store, forget, and check: Using
algebraic signatures to check remotely administered storage,” in
Proc. IEEE Intl Conf. Distributed Computing Systems (ICDCS 06),
2006, pp. 12–12.

[25] E.-C. Chang and J. Xu, “Remote integrity check with dishonest
storage server,” in Proc. 13th European Conf. Research in Computer
Security (ESORICS 08), 2008, pp. 223–237.

[26] F. Sebé, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte,
and J.-J. Quisquater, “Efficient remote data possession checking
in critical information infrastructures,” IEEE Trans. Knowledge and
Data Eng., vol. 20, no. 8, pp. 1034–1038, 2008.

[27] M. A. Shah, M. Baker, J. C. Mogul, R. Swaminathan et al., “Audit-
ing to keep online storage services honest.” in Proc. 11th USENIX
Workshop Hot Topics in Operating Systems (HotOS 07), 2007, pp. 1–6.

[28] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: The-
ory and implementation,” in Proc. ACM Cloud Computing Security
Workshop (CCSW 09), 2009, pp. 43–54.

[29] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proc. Theory of cryptography(TCC ’09),
2009, pp. 109–127.

[30] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Proc. 7th Intl Conf. Theory and Application of Cryp-
tology and Information Security: Advances in Cryptology (ASIACRYPT
01), 2001, pp. 514–532.

[31] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote
data integrity checking protocol with data dynamics and public
verifiability,” IEEE Trans. Knowledge and Data Eng., vol. 23, no. 9,
pp. 1432–1437, 2011.

[32] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proc. 4th Intl Conf.
Security and Privacy in Comm. Networks (SecureComm 08), 2008, pp.
1–10.

[33] R. C. Merkle, “Protocols for public key cryptosystems,” in Proc.
IEEE Symp. Security and Privacy, 1980, pp. 122–133.

[34] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative provable data
possession for integrity verification in multicloud storage,” IEEE
Trans. Parallel and Distributed Systems, vol. 23, no. 12, pp. 2231–
2244, 2012.

[35] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp:
Multiple-replica provable data possession,” in Proc. 28th Int’l Conf.
Distributed Computing Systems (ICDCS ’08), 2008, pp. 411–420.

[36] R. Curtmola, O. Khan, and R. Burns, “Robust remote data check-
ing,” in Proc. 4th ACM int’l Workshop on Storage Security and
Survivability, 2008, pp. 63–68.

[37] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data
checking for network coding-based distributed storage systems,”
in Proc. ACM Cloud Computing Security Workshop (CCSW 10), 2010,
pp. 31–42.

[38] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public
auditing for shared data in the cloud,” in Proc. 5th Int’l Conf. Cloud
Computing, 2012, pp. 295–302.

[39] ——, “Panda: Public auditing for shared data with efficient user
revocation in the cloud,” IEEE Trans. Services Computing, vol. 8,
no. 1, pp. 92–106, 2013.

Hao Jin Hao Jin received the B.Sc. degree in
Computer Software and Theory in 2005 from
Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China. He is currently a
PhD student majoring in Computer System and
Architecture at Huazhong University of Science
and Technology. His research interests focus on
security and privacy issues in cloud computing,
storage security and applied cryptography.

Hong Jiang Hong Jiang received the B.Sc.
degree in Computer Engineering in 1982 from
Huazhong University of Science and Technolo-
gy, Wuhan, China; the M.A.Sc. degree in Com-
puter Engineering in 1987 from the University of
Toronto, Toronto, Canada; and the PhD degree
in Computer Science in 1991 from the Texas
A&M University, College Station, Texas, USA.
Since August 1991 he has been at the University
of Nebraska-Lincoln, Lincoln, Nebraska, USA,
where he is Willa Cather Professor of Computer

Science and Engineering. At UNL, he has graduated 13 Ph.D. students
who upon their graduations either landed academic tenure-track posi-
tions in Ph.D.-granting US institutions or were employed by major US
IT corporations. He has also supervised more than 10 post-doctoral
fellows and visiting researchers at UNL. His present research interests
include computer architecture, computer storage systems and parallel
I/O, high-performance computing, big data computing, cloud computing,
performance evaluation. He served as an Associate Editor of the IEEE
Transactions on Parallel and Distributed Systems, 2008-2013. He has
over 200 publications in major journals and international Conferences in
these areas, including IEEE-TPDS, IEEE-TC, ACM-TACO, JPDC, ISCA,
MICRO, USENIX ATC, FAST, LISA, ICDCS, IPDPS, MIDDLEWARE,
OOPLAS, ECOOP, SC, ICS, HPDC, ICPP, etc., and his research has
been supported by NSF, DOD and the State of Nebraska. Dr. Jiang is a
Senior Member of IEEE, and Member of ACM.

Ke Zhou Ke Zhou received his PhD degree from
the College of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology (HUST) in 2003. Currently, he is a Pro-
fessor of the College of Computer Science and
Technology at HUST. His main research interest-
s include computer architecture, network storage
systems, parallel I/O, storage security and theo-
ry of network data behavior .

IEEE Transactions on Cloud Computing,Volume:PP,Issue:99,Date of Publication :04.February.2016

