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Abstract—Data uploading time constitutes a large portion of mobile data gathering time in wireless sensor networks. By equipping

multiple antennas on the mobile collector, data uploading time can be greatly shortened. However, previous works only treated wireless

link capacity as a constant and ignored power control on sensors, which would significantly deviate from the real wireless environments.

To overcome this problem, in this paper we propose a new data gathering cost minimization framework for mobile data gathering in

wireless sensor networks by considering dynamic wireless link capacity and power control jointly. Our new framework not only allows

concurrent data uploading from sensors to the mobile collector, but also determines transmission power under elastic link capacities.

We study the problem under constraints of flow conservation, energy consumption, elastic link capacity, transmission compatibility, and

sojourn time. We employ the subgradient iteration algorithm to solve the minimization problem. We first relax the problem with

Lagrangian dualization, then decompose the original problem into several subproblems, and present distributed algorithms to derive

data rate, link flow and routing, power control, and transmission compatibility. For the mobile collector, we also propose a subalgorithm

to determine sojourn time at different stopping locations. Finally, we provide extensive simulation results to demonstrate the

convergence and robustness of proposed algorithms. The results reveal 20 percent shorter data collection latency on average with

lower energy consumptions compared to previous works as well as lower data gathering cost and robustness in case of node failures.

Index Terms—Mobile data gathering, data gathering cost, convex optimization, elastic link capacity, distributed algorithms, wireless sensor

networks

Ç

1 INTRODUCTION AND RELATED WORK

WIRELESS sensor networks (WSNs) play an increasingly
important role in a wide range of applications, e.g.,

wildlife tracking, habitat monitoring and battlefield intelli-
gence. These applications usually involve hundreds or even
thousands of sensor nodes powered by batteries with lim-
ited energy over a large field. During the operation, sensors
organize themselves into a network and report sensing data
to the sink(s) periodically. How to aggregate data from sen-
sors largely determines the energy consumptions of the
network.

In recent years, extensive research efforts have been
devoted to data gathering in WSNs. Most of them focused
on static data gathering where sensing data is gathered by a
static sink, see, for example, [1], [2], [3]. In [1], an optimal
routing and data aggregation scheme for WSNs was pro-
posed to maximize network lifetime by jointly optimizing
data aggregation and routing. In [2], Wu et al. studied the
problem of tree construction for maximizing network life-
time with a single base station in the network. Zhang et al.

[3] studied energy efficient and collision-free polling sched-
ules in multi-hop clusters to reduce energy consumption.
However, these schemes suffer from the notorious energy
hole problem [4] in which the neighboring nodes closer to
the sink consume more energy due to relaying more data.
The congested area around the sink could easily cause ser-
vice interruptions or packet loss that can severely degrade
network performance.

On the other hand, mobile data gathering [5], [6], [7], [8],
[12], [13], [14] can mitigate the energy hole problem by uti-
lizing a mobile collector (called SenCar for convenience) to
gather data from sensors via short range communications. It
not only reduces routing costs on sensor nodes but also
serves as a mobile sink to gather data from even discon-
nected regions to facilitate network coverage and connectiv-
ity. Pazzi and Boukerche [5] proposed a mobile data
collecting strategy for delay-sensitive applications to allevi-
ate high traffic load and bottleneck in a sink’s vicinity. For
routing data to a mobile sink in a multi-hop fashion, Gatzi-
anas and Georgiadis [6] proposed a distributed algorithm to
maximize network lifetime. To obtain more flexible data
gathering tours for mobile collectors, Ma and Yang [7], [8]
proposed an algorithm for planning the moving path of
mobile collectors and balancing traffic load in multi-hop
networks. Although these mobile data gathering schemes
can save a great amount of energy compared to static data
gathering, there are still some inefficiencies. Some of them
may lead to extended data gathering latency because the
SenCar can only collect data from one sensor at a time using
only one antenna. If sensors can upload their data
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simultaneously, it would significantly speed up the data
gathering process and reduce latency.

The feasibility of using multiple-input-multiple-output
(MIMO) in WSNs to reduce data transmission time and
improve spatial diversities has been studied in the litera-
ture. In [9], it was demonstrated that MIMO can outperform
single-input-single-output (SISO) when the transmission
distance is larger than certain thresholds (e.g., 25 m) in
WSNs. In [10], joint MIMO and data gathering was consid-
ered and a distributed approximation algorithm that con-
structs a tree-like topology was proposed. In [11],
distributed clustering was introduced such that optimal
cooperating nodes can be selected to balance energy con-
sumption in each cluster. These works considered static
data gathering. To exploit the diversity gains from MIMO,
finding appropriate transmission and reception pairs of
nodes could be quite difficult in static data gathering. For
example, for a pair of transmission nodes, there could be no
receiving nodes at the location with good diversity gains.
To this end, Zhao et al. introduced a mobile collector with
two antennas [12], [18], [19]. In this way, on the receiving
side, the mobile collector can enjoy more freedom to move
to preferable locations (anchor points) to form a virtual
MIMO system. However, in [12], [18], [19], the data gather-
ing problem was formulated into an NP-hard integer pro-
gram problem and only heuristic approaches without
bounded ratio were provided.

Moreover, an important metric of WSNs, wireless link
capacity, was treated as a constant in [12], [18], [19]. In fact,
according to Shannon’s information theory, link capacity is
“elastic” given its dependence on bandwidth and signal to
interference plus noise ratio (SINR), where SINR further
depends on a variety of factors such as sensor’s transmis-
sion power, channel condition, noise level, etc. Hence, such
oversight would make the solutions deviate from real wire-
less environments and produce inaccurate results in prac-
tice. For example, nodes with lower SINR would have
limited link capacity and in turn, much lower data rates.
Thus, given the dynamics of channel conditions, how to
schedule data transmission, link flow and routing is a key
challenge. Furthermore, link capacity cannot be considered
alone in the absence of transmission power. For similar
interference and noise levels, increasing transmission power
results in higher SINR so that a sensor would have higher
link capacity. In addition, higher transmission power also
leads to longer transmission distance so that a sensor enjoys
more chances to disseminate sensing data to the SenCar. On
the other hand, transmission power cannot be increased
indefinitely with limited energy budget of each sensor.
Thus, there is a subtle relationship between transmission
power and link capacity. The joint consideration of these
factors with concurrent data uploading further complicates
the problem, which requires a new and comprehensive
study to understand the intertwined relationships among
these variables. This motivates us to propose a new frame-
work that enables transmission power control with concur-
rent data uploading under the elastic capacity constraint.

Due to physical limitation, in this paper we deploy two
antennas on the SenCar to ensure independent fading [18].
The SenCar stops at some pre-computed field locations,
called anchor points, for a period of sojourn time to schedule

concurrent data uploading from a pair sensor nodes. Once a
data gathering tour is completed, the SenCar returns to the
sink to upload data and re-computes anchor points for the
next round. There are several challenges to be addressed
here. First, how much data a sensor should generate itself,
and how much it should forward to other sensors, under
flow conservation and limited energy constraints. Second,
how much data a sensor needs to upload to different anchor
points under energy and elastic link capacity constraints.
Third, how much power sensors should use to concurrently
transmit data while guaranteeing spatial compatibility.
Finally, instead of staying at each anchor point for a fixed
amount of time as in [12], [18], [19], how long the SenCar
should stay at each anchor point for data gathering.

To answer these questions, we propose a comprehensive
data gathering cost minimization (DaGCM) framework. We
first define data gathering cost with respect to the amount
of data a sensor uploads to anchor points. Then we mini-
mize the total data gathering cost by integrating the con-
straints of flow conservation, energy consumption, elastic
link capacity and compatibility required by MIMO trans-
mission and bound of the total sojourn time into one optimi-
zation problem. Upon discovering the original problem is
non-convex, we convert it into a convex one by introducing
auxiliary variables and logarithmic transformation. By
applying Lagrangian dualization, we decompose the prob-
lem into several subproblems. We further provide distrib-
uted cross-layer subalgorithms to calculate data rates, link
flow and transmission power for each sensor as well as
sojourn time at different anchor points for the SenCar. Our
numerical results reveal that the proposed algorithms can
converge to the optimum in about 50 iterations. We also
conduct extensive simulations to show that our framework
can significantly reduce data gathering time and total
energy consumption compared to the algorithms without
concurrent data uploading and power control. In contrast to
[12], [18], [19], where only heuristic algorithms were pre-
sented, this is the first work to explore optimal solutions
with concurrent data uploading given the selection of
anchor points. To the best of our knowledge, this is also the
first work that integrates elastic link capacity and transmis-
sion power control into an optimization problem using
MIMO communications in WSNs.

The rest of this paper is organized as follows. Section 2
outlines the proposed framework and transforms the non-
convex problem into a convex one. Section 3 further
proposes distributed algorithms and Section 4 provides
numerical and simulation results. Finally, Section 5 con-
cludes the paper.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 Network Model and Assumptions

The network we consider consists of a set of static sensors,
denoted as N , and a set of anchor points, denoted as A. We
assume that the SenCar, denoted as s, is equipped with two
antennas while each sensor has a single antenna, and sen-
sors are randomly scattered over the entire sensing field.
When the SenCar moves to an anchor point a, it stays there
for a period of sojourn time ta to gather the data uploaded
from nearby sensors. All sensors in the coverage area of an
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anchor point form the neighbor set of the anchor point.
Fig. 1 illustrates such a network. To find a data collection
tour through all anchor points with the shortest distance,
we solve the well-known Traveling Salesman Problem
(TSP) using existing algorithms such as the nearest neighbor
algorithm.

We model the network, with the SenCar located at an
anchor point a ða 2 AÞ and denoted as sa, as a directed
graph Ga ¼ ðV a; EaÞ. V a ¼ N [ fsag is the set of nodes,
including all the sensors and the SenCar at anchor point a. It
should be mentioned that if V a includes only sensors near
an anchor point instead of all the sensors in the network, the
sensors far away from the anchor point may not have oppor-
tunities to upload their data. Clearly, it incurs more energy
cost for these sensors to upload data to the anchor point due
to longer transmission distance. Thus, they have to make a
tradeoff between the cost and the amount of data uploaded.
Ea represents the set of directed links among the sensors
and the SenCar. A directed link ði; jÞ 2 Ea if dij � rtx, where
dij denotes the distance between node i and node j and rtx
stands for the transmission range of a sensor node.

We set the weight of each link to be proportional to the
distance, eij ¼ daij, where eij is the energy consumed per

unit flow on link ði; jÞ and a is the path loss exponent.
The path-loss exponent is an empirical estimation of sig-
nal attenuations over transmission distances which
depends on the wireless environment. For example, for
free-space a ¼ 2, and for suburban areas a ranges from
2:7-3:5 [15]. To estimate a, empirical approaches can be
adopted during the network initialization phase. These
methods usually take inputs from measured data (trans-
mitting/receiving power on sensors) into well established
statistical models such as Okumura-Hata and COST Hata
models to calculate path-loss exponent a [15]. For simplic-
ity, we choose a ¼ 2 in this paper. Although signal fading
may lead to fluctuations of the receiving power, [16] has
shown only 26 and 5 percent mean errors using free-space
and Okumura-Hata models, respectively, versus experi-
mental measurements. To this end, it is sufficient to use
those established models to obtain a good estimation of
path loss exponent a in this paper.

All the links in the network are assumed to be symmetri-
cal, i.e., eij ¼ eji. Moreover, fa

ij represents the flow rate over
link ði; jÞ towards anchor point a. In practice, the instanta-
neous faij could be impacted by interference or congestions

while transmissions are being initiated. However, for a lon-
ger time, the traffic flow would reach stability when physi-
cal and MAC layer protocols are in effect. Since the effects
of signal fading and fluctuations of instantaneous data flow

are small over long time, in this paper, the “optimal” we
refer to as means “asymptotically optimal.”

Sensor i 2 V a generates data at a rate of Ra
i when the Sen-

Car moves to anchor point a. Here, rate vector ½Ra
i �8i2V a and

flow vector ½fij�8ði;jÞ2Ea are variables that can be adjusted to

minimize the optimization objective. This is because that
the data rate varies due to contentions under flow conversa-
tion and limited energy constraints. Since sensors have non-
renewable battery energy, to guarantee a specific network
lifetime, we impose an energy consumption budget Wi for
sensor i, i.e., the maximum energy that can be consumed by
a sensor node in each data gathering tour. Thus, one of the
goals in this work is to determine how much data a sensor
should generate and upload to minimize data gathering
cost. Although data rates may differ for different applica-
tions, the optimal data rate for a sensor is unique in a given
application.

Admittedly, introducing MIMO communications incurs
more overhead in the system. However, since the SenCar
can be equipped with a high-density battery pack with suffi-
cient energy and is able to perform more complex computa-
tions than sensor nodes, we focus on the overhead at the
sensor’s side (which has stringent energy). For successful
concurrent transmissions, sensors need to cooperate to
establish a (virtual) MIMO system. This would require
efforts to schedule transmissions between compatible sen-
sor pairs and the SenCar. An overview of scheduling algo-
rithms for the MIMO system was given in [36]. In
implementations, we can adapt these existing solutions to
schedule transmissions with minimized overhead. Another
source of overhead on sensors is extra energy consumption
in the circuitry due to more complex designs in MIMO. In
[37], it was shown that energy consumption in the circuit
can be compensated by optimizing transmission time and
modulation parameters. Thus, we can apply these strategies
to minimize overhead on sensors.

We assume that each sensor i has a data gathering cost
function NCið�Þ. Cost function is a well-defined concept
originated from economics to measure the production cost
in terms of the amount produced. In our framework, the
cost encompasses energy consumptions on both sensor
nodes and the SenCar regarding the amount of data gath-
ered. For sensors, they consume energy to transmit packets.
For the SenCar, it consumes energy to move, collect, decode
gathered packets and process sensing data. First, it is clear
that more gathered data leads to more energy consumptions
so the cost function is increasing. Second, to gather more
data, the increasing rate of energy consumption is even
faster because 1) SenCar needs to travel more frequently
between anchor points which consumes more energy dur-
ing the movement, and 2) Collecting more data requires
increasingly higher energy consumption on decoding and
processing the data. Finally, for every packet gathered, a
certain amount of energy is consumed in the network and
there is usually no breaking point or abrupt change on the
curve of the cost function. Based on these observations, we
can reasonably assume that the cost function is increasing,
strictly-convex and twice-differentiable with respect to the
amount of data gathered from sensor i in a data gathering
tour (i.e., yi ¼

P
a2A Ra

i t
a). In terms of optimization, the

Fig. 1. Illustration of mobile data gathering with two antennas, where two
sensors in a compatible pair can upload data to the SenCar
simultaneously.
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convex property ensures the convexity of the objective func-
tion, while the properties of twice-differentiability and
increasing guarantee the existence of Lagrangian dual
problem.

In addition, different cost functions reflect different pric-
ing mechanisms, where sensors independently adjust their
payments competing for data uploading opportunities. Our
work aims to minimize the total data gathering cost by
dynamically adjusting the data rates, link flows and
SenCar’s sojourn time constrained by a set of constraints we
will elaborate next.

2.2 Flow Conservation Constraint

The data flow of a sensor comes from two sources: incoming
traffic from other sensors and its own traffic. For each sensor
i 2 V a at anchor point a 2 A, the total outgoing traffic flow
fa
i;out ¼

P
j:ði;jÞ2Ea faij must equal the sum of the data flow

generated by sensor i, Ra
i , and the aggregated incoming traf-

fic flow, fa
i;in ¼Pj:ðj;iÞ2Ea fa

ji, that is,

fa
i;out ¼ Ra

i þ fai;in; 8i 2 V a; 8a 2 A: (1)

Flow conservation ensures that the outgoing flow and
incoming flow are balanced.

In WSNs, due to the overlap of sensing ranges, data
could be redundant or correlated. Transmitting redundant
data in the network consumes unnecessary energy and
reduces throughput of the network. Hence, it is desirable to
reduce redundancy. Based on [17], we introduceW as a cor-
relation parameter matrix that represents the amount of cor-
relation between spatial data. For nodes i and j that are
distance dij apart, we have

<ij ¼ W
d2ij : (2)

< is a semi-positive definite correlation matrix and all ele-
ments in W are less than 1. The expression can be explained
as that data generated at sensors close to each other would
have some correlations. As we increase the distance, there is
little correlation given distinct geographical events observed
by sensors and this correlation exponentially declines on dis-
tance. For example, if W12 ¼ 0:5 and d12 ¼ 3 m,

<12 ¼ 0:53 ¼ 0:125; W13 ¼ 0:5 and d13 ¼ 5 m, <13 ¼
0:55 ¼ 0:031. We can see that by increasing the distance from
3 to 5 m, < drops from 0.125 to 0.031. Using this model, data
correlation between two nodes exponentially decreases with
the increase of spatial distance.

To reduce redundancy due to data correlation, we
employ a distributed spatial coding technique called Sle-
pian-Wolf coding introduced in [20]. It encodes sensing
data on sensor nodes and decodes them on the SenCar. To
apply it to WSNs, we need to first calculate the joint entro-
pies of nodes. From the correlation matrix in Eq. (2), we can
compute the joint entropy of data packets by considering
<ij as the joint probability that two sensors generate packets
with the same content. Following the relation in Eq. (2), this
joint probability (correlation) should decline exponentially
on mutual distance. From the Slopian-Wolf theorem [20],
we know that nodes can jointly encode their data indepen-
dently at a rate lower-bounded by their joint entropy as
long as the Slepian-Wolf constraint is satisfied. In other

words, each node only needs to transmit at a lower data
rate depending on the spatial correlations between data
samples in its neighborhood. In this way, we can further
reduce the data gathering cost by removing redundancies
in data packets. Due to space limit, we omit mathematical
details to calculate Slepian-Wolf data rates. The standard
procedures can be found in [21].

2.3 Energy Constraint

To comply with MIMO communication paradigm, it is
important to ensure the number of concurrent data traffic
flows is no more than the number of antennas. Since the
SenCar is equipped with two antennas, at most two sensors
are allowed to simultaneously transmit data. Hence, for the
transmission to be successful, the two sensor nodes are
required to be compatible, and they are called a compatible
pair, which will be formally defined in Section 2.5.

Let rði;mÞ denote the ratio of time spent by a compatible
pair ði;mÞ or isolated sensors i and m on uploading data
during sojourn time ta when SenCar resides at a. Note that i
andm here are the nodes that can upload data to the SenCar
in a single hop, not any nodes in the neighbor set V a of the
SenCar. This is because that the compatibility of sensors
needs to be determined only when sensors simultaneously
transmit data to the SenCar. The transmission energy con-
sumption of sensor i is

P
j:ði;jÞ2Ea faijeijrði;mÞta. The energy

consumption of compatible pair ði;mÞ at anchor point a 2 A
should not exceed their energy budgets, that is,X

j:ði;jÞ2Ea

fa
ijeijrði;mÞta � Wi; (3)

X
n:ðm;nÞ2Ea

fa
mnemnrði;mÞta � Wm: (4)

2.4 Link Capacity Constraint

The capacity of a fading channel is defined as the maximum
rate that can be transmitted over the channel. Let pi denote
the transmission power allocated to transmitter i of link

ði; jÞ 2 Ea subject to pmin
i � pi � pmax

i , where pmin
i and pmax

i

denote the minimum and maximum transmission powers
of node i, respectively, and gij is the SINR of link ði; jÞ 2 Ea.

hij indicates the effective positive slow-varying gain of link
ði; jÞ and models slow-fading (such as distance-dependent
path-loss and/or log-normal shadowing). Sij denotes the
set of sensor nodes whose transmission may interfere with
the receiver of link ði; jÞ. For the transmission on link ði; jÞ
to be successful, it is necessary that the received signal at
node j is not garbled by another concurrent transmission
not involving i and j. We use the SINR model to character-
ize the condition of non-interference, where the average
SINR of link ði; jÞ is given by

gijðPP Þ ¼ hijpi
u
P

k6¼i hkjpk þ s2
ij

; (5)

where u is the orthogonality factor, s2
ij is the thermal noise

power associated with link ði; jÞ, and PP ¼ ðp1; p2; . . .ÞT
denotes the vector of transmission powers. hij can be
considered as a deterministic fading model
hij ¼ klði;jÞkðm;nÞd�a

lði;jÞkðm;nÞ, where dlði;jÞkðm;nÞ is the distance
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between transmitter m of link k and receiver j of link l, a is
the path loss exponent and klði;jÞkðm;nÞ is a normalization con-

stant depending on radio propagation properties of the
environment. Note that the transmission power affects not
only the SINR but also the communication range even with
a non-deterministic propagation channel since the received
signal power attenuates exponentially with the transmission
distance due to path loss, shadowing and multipath [24].

Shannon’s channel capacity formula [24] states that
the capacity of a fading channel ði; jÞ with receiver CSI is
given by

CijðPP Þ ¼ B logð1þ gijðPP ÞÞ;
where B is the base-band bandwidth normalized by a fixed
packet size. With reasonable spreading gain, hij is much
larger than hi1j, for i 6¼ i1, and we assume that not many

nearby nodes transmit at the same time. gijðPP Þ is much

larger than 1 so CijðPP Þ can be approximated as [25],

CijðPP Þ ¼ B logðgijðPP ÞÞ: (6)

The superiority of Eq. (6) under the assumption gijðPP Þ � 1
is that, it can be converted into a nonlinear, concave func-
tion through a log transformation to ensure global optimal-
ity of our proposed algorithm (Section 2.6).

For data transmission, flow rate fa
ij over link ði; jÞ at

anchor point a is restricted by link capacity CijðPP Þ, that is,

0 � fa
ij � CijðPP Þ; 8ði; jÞ 2 Ea; 8a 2 A: (7)

Constraint (7) implies that the data is correctly received if
CðPP Þ is greater than or equal to the ingress flow rate f . Oth-
erwise, the data received over the transmission burst cannot
be decoded correctly. It can be seen from Eq. (6) that the
capacity of link ði; jÞ is a variable determined by the trans-
mission power and the channel condition.

2.5 Compatibility Constraint

We apply MIMO to improve throughput by incorporating
spatial channels in order to reduce data gathering time of
the SenCar. There are several existing transceiver architec-
tures that can be used. For example, each sensor’s signal
can be demodulated by using a linear decorrelator or a min-
imum mean-square error (MMSE) receiver at the SenCar
[26]. For MMSE receiver, a matrix inversion with the size of
filter inputs is needed to obtain optimal tap weights. This
operation could lead to higher complexity, typically on the
order of N2 to N3 operations, where N is the number of fil-
ter inputs. In addition, in order to apply known techniques
such as Weiner algorithm for optimal linear estimation, the
MMSE filter needs to be expanded into two components: a
noise-whitening component and an Inter-Symbol-Interfer-
ence removal component. This would of course complicate
hardware designs. For low power devices such as sensors,
interference is usually small so we would expect linear
decorrelator to have comparable performance with MMSE
receiver. Thus, due to complexity concerns as well as similar
performance in WSNs, we use linear decorrelator in this
paper but keep our mind open to consider MMSE in future.
In the following, we will explore how to enable concurrent
data uploading using two antennas.

To guarantee linear decorrelation is successful, two sen-
sors can simultaneously upload data to the SenCar. Fig. 2
shows concurrent data uploading for two antennas with
linear decorrelator. Let Hi ¼ ½hi1; hi2�T represent the channel
gain vector between sensor i and the two antennas of the
SenCar. H1 and H2 are the two columns of the channel gain
matrixH.

Suppose that sensors 1 and 2 want to upload data to the
SenCar at rates x1 and x2, respectively. The received data at
the SenCar is in the form of

y ¼ H1x1 þH2x2 þ n; (8)

where n is independent and identically distributed (i.i.d.)

CNð0; s2I2Þ channel noise. It is clear from (8) that a data
stream suffers from extra interference from other data
streams. A way to remove this interstream interference from
an interested sensor is to project the received signal y onto
the subspace orthogonal to the one spanned by the other
channel vector. We choose U1 and U2 as the filter vectors for

sensors 1 and 2, respectively, which satisfies U�
1
TH2 ¼ 0 and

U�
2
TH1 ¼ 0. It is clear that U1 is a filter vector in the space V1

orthogonal to H2 and U2 is a filter vector in the space V2

orthogonal to H1. However, to maximize the received signal
strength, U1 should lie in the same direction as the projec-
tion of H1 onto V1. U2 should be similarly chosen. Hence, as
shown in Fig. 2, the received signal can be decoded as

~x1 ¼ U�
1
Ty ¼ U�

1
TH1x1 þU�

1
Tn;

~x2 ¼ U�
2
Ty ¼ U�

2
TH2x2 þU�

2
Tn:

�
(9)

After the filtering process of two filters, interflow interfer-
ence nulling can be achieved, i.e., the data rates x1 and x2 can
be separated from each other, which guarantees that the two
sensors can concurrently upload data to the SenCar. Without
loss of generality, U1 and U2 can be chosen as a unit vector,
since increasing their lengthwill not increase the SNR

U1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh22j2 þ jh21j2

q
Þ�1½h22;�h21�T ;

U2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh12j2 þ jh11j2

q
Þ�1½h12;�h11�T :

8<:
Given transmission power of each node, not any arbitrary
pair of sensors can successfully transmit packets to the Sen-
Car simultaneously. For successful transmission, the follow-
ing criteria should be satisfied [18]

SNR1 ¼ p1 UT
1H1

�� ��2=s2 	 d1; (10)

SNR2 ¼ p2 UT
2H2

�� ��2=s2 	 d1; (11)

where p1, p2, SNR1 and SNR2 are the transmission powers
and SNR of the data from sensors 1 and 2, respectively, and

Fig. 2. Linear decorrelation strategy.
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d1 indicates the SNR threshold for the SenCar to correctly
decode the received data. Any two sensors i and m that sat-
isfy these criteria can successfully make concurrent data
uploading to the SenCar. Such a sensor pair ði;mÞ is referred
to as a compatible pair. Specifically, we will employ a mecha-
nism, i.e., power control as defined in Section 3.1.4, to ensure
the two sensor peers to be compatible with each other. By
power control, the transmission powers of two sensors i and
m will be adjusted based on the channel gains and the con-
gestion prices until criteria (10) and (11) are satisfied.

2.6 Cross-Layer Optimization Model

Combining the optimization objective with constraints, now
the DaGCM problem can be formulated as

P1 : min
X
i2N

NCi

X
a2A

Ra
i t

a

 !
variables : Ra

i ; t
a; fa

ij and pij

(12)

subject to constraints (1), (3), (4), (7), (10), (11), pmin
i � pi �

pmax
i and

P
a2A ta � T . The last constraint ensures that the

total sojourn time at all anchor points is no more than a
bound T . Note that the data gathering latency includes the
travel and sojourn time at all anchor points. The travel time
is determined by the sequence of visiting anchor points.

The DaGCM problem in (12) is non-convex since there
exist couplings among variables Ra

i , t
a, fa

ij and pi in objective
function (12) and constraints (3). Although the cost function
NCiðRiÞ is a strictly convex function, it is not strictly convex
with respect to Ra

i or t
a due to linearity of

P
a2A Ra

i t
a. This is

because a sensor can upload data to the SenCar multiple
times when the SenCar resides at different anchor points.
Thus, the objective function is no longer convex with respect
to Ra

i and ta since the dual of the problem may not be differ-
entiable at every point of Ra

i or t
a [27].

To resolve these couplings, we employ auxiliary varia-
bles and appropriate transformation to convert the problem
into an equivalent solvable problem. Define xa

ij ¼ fa
ijt

a,
yif

a
i ¼ Ra

i t
a, fa

i 	 0, and
P

a2A fa
i ¼ 1 where xa

ij denotes the

data over link ði; jÞ destined to the SenCar at anchor point a,
which can be considered as a routing variable, yi represents
the total amount of data generated by sensor i in a data
gathering tour, and fa

i is a data split variable with fa
i 	 0,

which determines the portion of the data uploaded by sen-
sor i to the SenCar at anchor point a in the total amount of
data generated by sensor i in a gathering tour. There are
two reasons why a sensor node splits its data to upload to
different anchor points, instead of simply choosing the most
energy-efficient anchor point to upload all the data. First, a
sensor may upload all or part of its data during allocated
sojourn time of the SenCar at this anchor point. Some sen-
sors may not to have enough time to upload all the data
during this time so they have to upload the remaining data
to other anchor points. Second, new data may be generated
while the SenCar travels so they must be routed towards
other anchor points.

By multiplying the flow conservation and link capacity
constraints by ta , the original optimization problem (P1)
can be transformed into the following optimization problem
with respect to x, y, f, t and p

P2 : min
x;y;f;t;p

X
i2N

NCiðyiÞ (13)

subject toX
j:ði;jÞ2Ea

xa
ij ¼ yif

a
i þ

X
j:ðj;iÞ2Ea

xa
ji; 8i 2 N; 8a 2 A; (14)

X
j:ði;jÞ2Ea

xa
ijeijrði;mÞ � Wi; 8i;m 2 N; (15)

X
n:ðm;nÞ2Ea

xa
mnemnrði;mÞ � Wm; 8i;m 2 N; (16)

0 � xaij � CijðPP Þta; 8ði; jÞ 2 Ea; 8a 2 A; (17)

minfSNRi; SNRmg 	 d1; 8i;m 2 N; (18)X
a2A

ta � T;
X
a2A

fa
i ¼ 1; pmin

ij � pij � pmax
ij ; 8ði; jÞ 2 Ea (19)

with X
i;m2N

rði;mÞ ¼ 1;fa
i 	 0; 8i 2 N; 8a 2 A;

where constraint (18) indicates that filters Ui and Um are not
only for the channel between the sensor and the SenCar but
also for the channel between its compatible peer and the
SenCar. However, from a computation point of view, con-
straint (18) is equivalent to both SNRi 	 d1 and SNRm 	 d1.

The major challenge of solving the optimization problem
(P2) is the two global dependencies: (1) among data amount
xaij, total data amount yi and data split variable fa

i , and

(2) among each link capacity CijðPP Þ, sojourn time ta and
data amount xa

ij. To break the dependencies between varia-

bles yi and fa
i in flow conservation (14) and between pi and

ta in link capacity constraint (17), we take a hierarchical
decomposition approach to separating P2 into two levels of
optimization.

At the lower level, we consider the following problem,
denoted by P3(a), that minimizes the total data gathering
cost over variables x, y , and pwith fixed f and t

P3 ðaÞ : min
x;y;p

X
i2N

NCiðyiÞ (20)

subject to constraints (14)-(18)

pmin
i � pi � pmax

i (21)X
i;m2N

rði;mÞ ¼ 1: (22)

At the higher level, we consider the problem of updating vari-
ables f and t, denoted by P3(b), by solving for 8a 2 A; 8i 2
N;fa

i 	 0; ta 	 0

P3 ðbÞ : min
f;t

X
i2N

NEi

�
fa
i ; t

a
�

(23)

subject to X
a2A

ta � T and
X
a2A

fa
i ¼ 1;

where NEiðfa
i ; t

aÞ is the optimal objective value of P3(a)
over x, y, and p.
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First, we consider how to solve P3(a). A log transforma-
tion is applied to variables pi, i.e., ~pi ¼ logðpiÞ, while other
variables keep unchanged. By dividing taB on both sides of

link capacity constraint (17) and using equation
xa
ij

taB ¼
log expð x

a
ij

taBÞ, constraint (17) can be rewritten as

log
s2
ij

hij
exp

xaij
taB

� ~pi

� �
þ u

X
k 6¼i

hkj

hij
exp

xa
ij

taB
� ~pi þ ~pk

� � !
� 0:

(24)

Let ~pmin
i ¼ logðpmin

i Þ and ~pmax
i ¼ logðpmax

i Þ. P3(a) for varia-
bles x, y, and p can be transformed into a minimization
problem P4 over variables x, y, and ~p for fixed f and t

P4: min
x ;y ;~p

X
i2N

NC iðy iÞ

subject to constraints (14)-(16), (24) and

minfSNRi expð~piÞ; SNRm expð~pmÞg 	 d1; (25)

~pmin
i � ~pi � ~pmax

i; (26)X
i;m2N

rði;mÞ ¼ 1: (27)

To solve P4, we need to verify its convexity first. We have
the following theorem.

Theorem 1. For a fixed f and t, P4 with constraints (14)-(16)
and (24)-(27) is a convex optimization problem over x, y,
and ~p.

Proof. Since the objective function NCiðyiÞ is a convex func-
tion with respect to yi, we show that the constraint set
composed by constraints (14)-(16) and (24)-(27) is convex.
It is easy to verify that constraint (14) is convex since it is
an affine function over x and y for a fixed f. Constraints
(15) and (16) are also convex since they are all linear
functions.

For the convexity of constraint (24), it is known that
logðPi ai expðxiÞÞ is convex if ai 	 0 and xi 2 R and its
composition with an affine function preserves convex-

ity [28]. Hence, function logðs
2
ij

hij
expðxa

ij=t
aB� ~piÞ þ

u
P

k6¼i

hkj
hij

expðxaij=taBþ ~pk � ~piÞÞ is convex over x and ~p

for a fixed ta since hij; hkj; u and B are positive con-
stants. In addition, since function fðxÞ ¼ maxfx1;
x2; . . . ; xng is convex on Rn [28], function gðPP Þ ¼
minfSNRi; SNRmg is concave and nonincreasing with
p. Furthermore, its composition with exponential func-

tion e~p, gð~PP Þ ¼ minfSNRi exp ð~piÞ; SNRm expð~pmÞg; is

concave over ~p since function e~p is convex on R.

Indeed, the concavity of gð~PP Þ implies that constraint
(25) is convex. Hence the transformed DaGCM prob-
lem P4 is convex. tu
Theorem 1 shows that the Slater condition [28] is satisfied

for solving (P2), i.e., there is no duality gap and there exists
at least one Lagrangian multiplier. The primal and dual
problems have optimal solutions. Thus, it can be efficiently
tackled by convex programming techniques.

3 DISTRIBUTED ALGORITHM FOR DAGCM
PROBLEM

In this section, we propose a distributed algorithm to solve
the transformed DaGCM problem (P3). We utilize the sub-
gradient algorithm based on the dual decomposition
method [28], which is an efficient technique for convex pro-
grams and can naturally achieve distributed implementa-
tion. We first provide distributed subalgorithms for data
control, routing and power control by solving P4 over x, y
and ~p with fixed f and t at the lower level. Then we update
variables f and t by solving P3(b) at the higher level and
give the distributed subalgorithms for data splitting and
sojourn time allocation.

3.1 Lower-Level Optimization

3.1.1 Lagrangian Dual Decomposition

We use the Lagrangian dual decomposition to separate cor-
related variables. To reduce the computation complexity,
constraint (24) can be transformed equivalently to

0 <
s2
ij

hij
exp

xa
ij

taB
� ~pi

� �
þ u

X
k6¼i

hkj

hij
exp

xa
ij

taB
� ~pi þ ~pk

� �
� 1:

(28)
We first introduce Lagrangian multipliers �a

i and yij for con-
straints (14) and (28), mði;mÞ for constraints (15) and (16), and

�i and hm for (25), respectively, for i;m 2 N , ði; jÞ 2 Ea,
a 2 A. �a

i , mði;mÞ and yij can be interpreted as the flow con-

servation price for sensor i at anchor point a, the price of the
energy consumed by the compatible sensor pair ði;mÞ at
anchor point a no more than their total energy budget, and
the price for keeping the outgoing rate no more than the
link’s average capacity towards a (congestion price), respec-
tively. Moreover, �i and hm can be referred to as the price of
power control required for sensors i and m to be compati-
ble. The partial Lagrangian of P4 with fixed f and t can be
expressed as

Lðx; y; ~p; �;m; y; �; hÞ ¼ Lyðy; �Þ þ Lx;~pðx; ~p; �;m; y; �; hÞ;
where

Lyðy; �Þ ¼
X
i2N

NCiðyiÞ þ
X
a2A

X
i2N

�a
i yif

a
i

Lx;~pðx; ~p; �;m; y; �; hÞ

¼
X
a2A

X
i2N

�a
i

X
j:ðj;iÞ2Ea

xa
ji �

X
j:ði;jÞ2Ea

xa
ij

0@ 1Aþ
X
i;j2N

yij

þ
X
a2A

X
i;m2N

mði;mÞF ðxa
ij; x

a
mnÞ þ

X
a2A

X
i;j2N

yij
s2
ij

hij
exp

xaij
taB

� ~pi

� �
þ
X
a2A

X
i;j2N

yiju
X
k 6¼i

hkj

hij
exp

xaij
taB

� ~pi þ ~pk

� �
þ
X
a2A

X
i;m2N

�iðd1 � SNRiexpð~piÞÞ þ hmðd1 � SNRmexpð~pmÞÞ;

where

F ðxa
ij; x

a
mnÞ ¼ rði;mÞ

X
j:ði;jÞ2Ea

xa
ijeij þ

X
n:ðm;nÞ2Ea

xa
mnemn

0@ 1A
�Wi �Wm:
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We define the objective function of Lagrangian dual prob-
lem as

Dð�;m; y; �; hÞ ¼ min
�;m;y;�;h	0

Lðx; y; ~p; �;m; y; �; hÞ

with constraints (26) and (27). By the linearity of the differ-
entiation operator, the objective can be decomposed into
two separate minimization subproblems as follows:

DP1 : Dyð�Þ ¼ min
y	0

Lyðy; �Þ;
DP2 : Dx;~pð�;m; y; �; hÞ ¼ min

x;~p	0
Lx;~pðx; ~p; �;m; y; �; hÞ;

subject to ~pmin
i � ~pi � ~pmax

i ; 8ði; jÞ 2 Ea; 8a 2 A:

The minimization in the dual function has been decom-
posed into two subproblems to achieve the control on the
data amount generated at the transport layer, the routing
path selection (data flow) at the network layer and the trans-
mission power control at the physical layer. Data flow and
transmission power control need to interact through mes-
sage exchanges due to non-decomposition between data
rate variable xa

ij and transmission power variable ~pi inDP2.
A layer consists of one or more subproblems. Functions

of primal or Lagrangian dual variables provide the interfa-
ces between different layers. Each layer controls a subset of
decision variables, and observes a subset of constant param-
eters and variables from other layers. For example, the dual
price variable � coordinates data generating amount and
data flow control subproblems while acting as the interface
between transport and network layer. The physical layer
controls the transmission power variable p and the power
control price variable � while observing the link capacity
price variable y from the network layer. This layered archi-
tecture enables a scalable, solvable and implementable
DaGCM algorithm. The dual problem of the primal problem
is given by

max
�;m;y;�;h	0

Dð�;m; y; �; hÞ: (29)

Because the primal problem is convex and also satisfies the
Slater’s condition [28], we will design a distributed primal-
dual algorithm to find the optimal data generating amount,
routing path, transmission power and their corresponding
optimal prices next.

3.1.2 Data Control Subalgorithm (DCSA)

The data control subalgorithm aims to determine the opti-
mal amount of data generated at each sensor by solving
DP1. Since DP1 is convex, we can employ the Karush-
Kuhn-Tucker (KKT) condition to obtain the amount of data
generated by sensor i in a data gathering tour by

yi ¼ NC
0�1

i

�
�a
i f

a
i

�
; 8i 2 N; 8a 2 A; (30)

where NC
0�1

i ðyiÞ denotes the inverse of the first derivative of
NCiðyiÞ with respect to yi. The optimal solution of subalgor-
ithm DCSA is defined to be a primal-dual pair (y�i ; �

a�
i ) such

that for 8i 2 N; 8a 2 A

y�i ¼ argminLy

�
y�i ; �

a�
i

�
; (31)

�a�
i y�if

a
i þ

X
j:ðj;iÞ2Ea

xa�
ji �

X
j:ði;jÞ2Ea

xa�
ij

0@ 1A ¼ 0; �a�
i 	 0: (32)

It can be observed that the subgradients on both data gener-
ating amount yi and price �a

i play important roles in the
maximization of the dual function, since they naturally
characterize the direction and speed of convergence of the
two variables to reach their optimal solutions (y�i ; �

a�
i ). The

dual problem (29) is considered with the maximization of
Dyð�Þ subject to the constraint �a

i 	 0 for 8i 2 N;8a 2 A.
We summarize the subalgorithm for sensor i in Table 1.

Based on [27], the number of iterations required by the pri-
mal-dual method for convergence is a linear function of the
problem size. Thus, the subalgorithm needs OðjNjÞ itera-
tions to converge. The convergence is guaranteed when "
satisfies the following theorem regardless of initial Lagrang-
ian multipliers.

Theorem 2. The update iterations of yi and �a
i by (30) and (38)

will converge to the optimal solution ðy�i ; �a�
i Þ provided that a

sequence of step sizes satisfies

"ðkÞ ! 0;
X1
k¼1

"ðkÞ ! 1 and
X1
k¼1

"ðkÞ2 < 1:

Proof. The proof is omitted. A similar proof can be found in
[28]. tu
The subproblem can be solved by sensors in a distributed

manner through message exchange such as flow amount
message from their neighbors. Data generating amount yi
and corresponding price �a

i converge to optimum ðy�i ; �a�
i Þ

by adjusting the sizes of subgradients along different direc-
tions of the subgradients. Eq. (38) indicates that data gener-
ating price �a

i is closely related to the available buffer space
at sensor i, which in turn determines the difference between
the incoming, outgoing rates and the amount of data gener-
ated. The more available buffer space a sensor has, the
larger difference between incoming and outgoing rates,
which implies a decreasing price �a

i and more data the sen-
sor can generate. Otherwise, if its buffer is full, the price for
data generation is higher given that there is no more space
to accommodate new data. In fact, this is a back-pressure
algorithm where the flow with greater queue length differ-
ence is granted higher priority to pass through the node
with more available buffer space.

3.1.3 Routing Subalgorithm (RSA)

We now solve DP2. Our objective is to determine how to
route data from sensors to anchor points and adjust flow

TABLE 1
Data Control Subalgorithm for Sensor i

Initialize Lagrangian multipliers �a
i ð0Þ 	 0; a 2 A

Repeat for a given �a
i and each j : ði; jÞ 2 Ea, a 2 A

Get �a
i ðkÞ at k-th iteration;

Compute the derivative NC
0
iðyiÞ;

Compute yiðkÞ by Eq. (30) such that (31) and (32) are
satisfied;
Remove ði; jÞ from Ea

Until Ea is empty;
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amount on different links. The dual function contains jNj
routing subproblems under the constraints of energy and
link capacity. The data routing strategy determines the flow
amount xij over link ði; jÞ. It also plays an important role in
reducing energy consumption and alleviating link conges-
tion. That is, when link ði; jÞ is congested, the flow amount
xij over this link can be lowered by adjusting the routing
path to avoid wasting energy resources.

Since P4 is convex, the solutions that satisfy the Karush-
Kuhn-Tucker conditions are sufficient to be optimal solu-
tions for itself and its dual problem [27]. Thus, we propose
an efficient search algorithm based on the KKT conditions
to find an optimal solution. For a fixed f and t, we obtain
the KKT conditions with respect to x, 8a 2 A; 8i; j 2 N ,

@L

@xaij
¼ ð�a

j � �a
i Þ þ mði;mÞeði;mÞ þ yij

taB
exp

xaij
taB

� �
=gijexpð~PÞ ¼ 0

(33)

mði;mÞF ðxa
ij; x

a
mnÞ ¼ 0 (34)

yij exp
xa
ij

taB

� �
=gijexpð~PÞ � 1

� �
¼ 0

�a
ij 	 0;mði;mÞ 	 0; yij 	 0;

(35)

where eði;mÞ ¼ rði;mÞðPj:ði;jÞ2Ea eij þ
P

n:ðm;nÞ2Ea emnÞ and

gijexpð~PÞ ¼ hijexpð~piÞ
u
P

k6¼i
hkjexpð~pkÞþs2

ij

:

For mði;mÞ 	 0; yij 	 0, we have the following three cases
according to the KKT conditions.

1) If mði;mÞ > 0 and yij ¼ 0, then F ðxa
ij; x

a
mnÞ ¼ 0, i.e.,

xa
ij ¼ Wi=rði;mÞeij, which implies that xa

ij is a con-

stant. Furthermore, we obtain that if mði;mÞ ¼ ð�a
i �

�a
j Þ=eði;mÞ > 0, then condition (33) is satisfied; other-

wise, this solution is infeasible.
2) If mði;mÞ ¼ 0 and yij > 0, then we have the following

equations

exp
xa
ij

taB

� �
=gijexpð~PÞ ¼ 1;

ð�a
j � �a

i Þ þ
yij

taB
exp

xa
ij

taB

� �
=gijexpð~PÞ ¼ 0:

We can obtain that if yij ¼ ð�a
i � �a

j ÞtaB > 0, then

xaij ¼ taCijexpð~PÞ.
3) If mði;mÞ > 0 and yij > 0, then according to the KKT

conditions (33)-(35), we have xa
ij ¼ tazijCijexpð~PÞ,

where zij ¼ logðð�a
i � �a

j � mði;mÞeði;mÞÞtaB=yijÞ. zij
can be regarded as the price for xaij to achieve the

optimum.
From the above analysis, we can find that optimal rout-

ing of data from a sensor to the SenCar depends on not only
energy consumption prices mði;mÞ and congestion prices yij,
but also SINR gij between the sensor and its neighbors. This

is done by exchanging messages with SINR rij and price zij
information. For brevity, given Lagrangian multiplier � and
SINR gij, we should first determine if equations

mði;mÞ ¼ ð�a
i � �a

j Þ=eði;mÞ and yij ¼ ð�a
i � �a

j ÞtaB are satis-

fied and then calculate the value of xa
ij. Note that eði;mÞ can

be regarded as the sum of the energy consumed by outgoing
flows from sensor i and energy consumption from sensorm.
F ðxaij; xa

mnÞ denotes the energy of compatible sensor pair

ði;mÞ after they transmit the data of flow amount xa
ij and

xamn. The consumed energy and the remaining energy,
eði;mÞ and F ðxa

ij; x
a
mnÞ, affect the value of flow amount xij

and the speed of xij converging to its optimum x�
ij. Cost �

a
i

plays a critical role in balancing the amount of data gener-
ated by each sensor and the routing of data from sensors to
the SenCar.

Note that solution xa
ij is not continuous as the dual varia-

bles m and n change, which implies that the values in the
optimal solution of the Lagrangian dual cannot be directly
applied to primal problem (P4). This issue is usually
resolved by employing the alternate direction method of
multipliers (ADMM) [29, p. 249, P253]. However, as stated
in [30], when implemented in a network setting, the ADMM
algorithm requires substantial communication overhead.
On the other hand, this problem can be resolved by using
proximal point method, i.e., adding a quadratic term

x2 � y2 into the Lagrange [30], [31], where y is an auxiliary
variable. However, at each iteration, the algorithm needs to
solve a primal optimization problem with quadratic term
for a given y until y ¼ x�. Clearly, the proximal method
increases the computation overhead significantly to obtain
optimal solution.

In view of this, we employ the primal recovery method
introduced in [32] to recover the optimal values for varia-
bles xa

ij. For the kth subgradient iteration in the lower level
optimization, we can compose a primal feasible bxa

ijðkÞ as

follows:

bxa
ijðkÞ ¼

1

k

Xk
h¼1

xa
ijðhÞ ¼

xa
ijð1Þ; k ¼ 1;

k�1
k
bxa
ijðk� 1Þ þ 1

k x
a
ijðkÞ; k > 1:

�
(36)

It was proved in [32] that when diminishing stepsize is
used, any accumulation point of sequence fbxa

ijðnÞg gener-
ated by (36) is feasible to the primal problem, and can con-
verge to a primal optimal solution. Thus, optimal flow
amount of each outgoing link for sensor i can be obtained
when fbxa

ijðnÞg converges to bxa�
ij .

The subalgorithm over a link ði; jÞ is summarized in
Table 2. Similar to the data control subalgorithm, the time
complexity of the routing subalgorithm is OðjN jÞ to make
fxijðkÞg converge to its optimum x�

ij.

3.1.4 Power Control and Compatibility Subalgorithm

(PCSA)

The goal of PCSA is to give a distributed protocol for opti-
mal power allocation in the physical layer. The objective for
power control is to ensure two sensors to be compatible
while determining suitable link capacities. Based on the
compatibility constraint in Section 2.5, whether two sensors
i and m can simultaneously upload their data to the SenCar
at rate xi and xm depends on two main factors: their trans-
mission powers and gains of links between the sensor pairs
and the SenCar. The latter is related to propagation loss,
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spreading gain and other factors of radio propagation in the
environment, which is out of the scope of this paper.

The objective of optimal power allocation can be
achieved by solving DP2. Since DP2 is convex for fixed x; ta,
�;m; y; � and h, we can use the KKT conditions to find the
optimal power. We take the partial derivative of
Lx;~pðx; ~p; �;m; y; �; hÞwith respect to ~p, i.e.,

@Lx;~p

@~pi
¼ expð~piÞmsgij

� yij exp
xa
ij

taB

� �
=gijexpð~PÞ � �iSNRiexpð~piÞ;

where

msgij ¼
X

i0 6¼i;j0 6¼j;ði0;j0Þ2Ea

yi0j0u
X
k6¼i0

hkj0

hij0
exp

xa
i0j0

taB
� ~p

� �
:

It can be regarded as the locally measurable quantities
based on the messages from the neighbors of node i.

Based on KKT condition, power variable ~pi can be
updated by

~pi ¼ 1

2
log

yijexpð
xa
ij

taBÞuð
P

k6¼i hkjexpð~pkÞ þ s2
ijÞ

hijðmsgij � jUT
1H1j2=s2Þ

24 35~pmax
i

~pmin
i

; (37)

where

½a�~pmax

~pmin ¼ minf~pmax;maxða; ~pminÞg:

Note that the update on power ~pm is similar to that of ~pi by
subscript replacement. Each transmitting node calculates
message msgij and passes to all its neighbors. We also
observe that to facilitate computation of the power, price yij
and flow amount xa

ij over link ði; jÞ need to be sent to the

power control subalgorithm. As a result, the interface varia-
bles yij and xa

ij are used to control the performance of the

two subalgorithms and regulate the power allocation and
routing strategies towards the optimal solution.

Power control at the physical layer cooperates with data
routing at the network layer to update sensors’ routing
strategies and power allocation. The flow amount xa

ij from

RSA needs to be transmitted to PCSA while the SINR gij
based on the updated transmission powers needs to send to
RSA. Intuitively, if the local queueing delay is large or the
congestion is heavy for a sensor, its transmission power
should increase or increase moderately if the current power
level is already high. If queueing delays on other links are
long, the transmission power of this sensor should be
decreased in order to reduce the interference on those links.
The subalgorithm for sensor i is summarized in Table 3.
Since determining the compatibility for each sensor needs
OðjNjÞ iterations, the complexity of this subalgorithm is

OðjNj2Þ to ensure optimization variables to converge.

3.1.5 Lagrangian Multiplier Update

In each iteration of the data control, routing and power con-
trol subalgorithms, sensor i solves the subproblems using
the current Lagrangian multipliers �a

i ðkÞ;mði;mÞðkÞ;
yijðkÞ; �iðkÞ and hmðkÞ where k denotes the index of subgra-
dient iterations. Sensor i updates its Lagrangian multipliers
according to

�a
i ðkþ 1Þ ¼ 	�a

i ðkÞ � "ðkÞrL
�
�a
i

�ðkÞ
þ; (38)

mði;mÞðkþ 1Þ ¼ 	mði;mÞðkÞ � "ðkÞF�xa
ijðkÞ; xa

mnðkÞ
�
þ

; (39)

yijðkþ 1Þ ¼ ½yijðkÞ � "ðkÞrLðyijÞðkÞ�þ; (40)

�iðkþ 1Þ ¼ ½�iðkÞ � "ðkÞðd1 � SNRi expð~piðkÞÞ�þ; (41)

hmðkþ 1Þ ¼ ½hmðkÞ � "ðkÞðd1 � SNRi expð~pmðkÞÞ�þ; (42)

where

rL
�
�a
i

�ðkÞ ¼ yiðkÞfa
i þ

X
j:ðj;iÞ2Ea

xa
jiðkÞ �

X
j:ði;jÞ2Ea

xa
ijðkÞ;

rLðyijÞðkÞ ¼ exp
xa
ijðkÞ
taB

� �
=gij expð~PðkÞÞ � 1;

and "ðkÞ is the the diminishing stepsize required in
Theorem 2. Sensor i will transmit the updated prices �a

i ðkÞ
and yijðkÞ to its direct neighbors to facilitate computation of
xaij and ~pi in the next iteration. Interestingly, Eq. (38) shows

that if demand yiðkÞfa
i of sensor buffer at node i for caching

the generated data exceeds the efficient storage spaceP
j:ði;jÞ2Ea xa

ijðkÞ �
P

j:ðj;iÞ2Ea xa
jiðkÞ, the flow conservation

price �a
i will increase, which will in turn reduce the demand

TABLE 2
Routing Subalgorithm over Link ði; jÞ

Repeat for j : ði; jÞ 2 Ea, n : ðm;nÞ 2 Ea and a 2 A
Receive �a

i ;
Receive the message SINR gij;
if mði;mÞ ¼ ð�a

i � �a
j Þ=eði;mÞ then

xaij ¼ Wi=rði;mÞeij;
else if yij ¼ ð�a

i � �a
j ÞtaB then

xa
ij ¼ taCijexpð eP Þ;

else
Calculate zij ¼ logðð�a

i � �a
j � mði;mÞeði;mÞÞtaB=yijÞ;

xaij ¼ tazijCijexpð eP Þ;
Send the zij to its neighbor nodes;
end if
Compute the primal feasible bxa

ijðkÞ by (36);
Remove ði; jÞ from Ea;

Until Ea is empty;

TABLE 3
Power Control and Compatibility Subalgorithm for Sensor i

Initialize epmin
i , epmax

i ; epmin
m , epmax

m for link lði; jÞ, kðm;nÞ;
Receive congestion prices yij and ymn;
Repeat for each j : ði; jÞ; n : ðm;nÞ 2 Ea and the given yij and
ymn

Get messagemsgij andmsgmn;
Get flow amount xa

ij, x
a
mn from RSA;

Update epiðkÞ and epmðkÞ by (37);
If compatibility constraint is satisfied, sensors i andm are
a compatible pair and can transmit simultaneously;

Calculate the messagemsgij and pass it to neighbor nodes;
Remove ði; jÞ; ðm;nÞ from Ea

Until Ea is empty
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and release buffer space. Moreover, Eq. (40) shows that the
congestion price yij over link ði; jÞ is related to the sojourn
time ta of the SenCar and the SINR gij of the link. That is, a

larger sojourn time and SINR will lead to an increase of con-
gestion price.

3.2 Higher-Level Optimization

The above subalgorithms for the lower-level optimization
works under the assumption that both fa

i and ta are fixed.
At the higher level, we now explore how sensor i adjusts fa

i

and how long the SenCar should sojourn at each anchor
point to achieve the optimal solution of DaGCM problem
P2 by solving P3(b).

As aforementioned, NEðf; tÞ in P3(b) is the optimal
objective value of P3(a) over x, y and ~p. Let ��, m�, y�, �� and
h� represent the Lagrangian multiplier values that maximize
Dðf; t; �;m; y; �; hÞ for given f and t. NEðf; tÞ can be
expressed by

NEðf; tÞ ¼ Lðf; t; x�; y�; ~p�; ��;m�; y�; ��; h�Þ: (43)

Next, we present data split and sojourn time allocation sub-
algorithm (STAS) by taking the partial derivative of
NEðf; tÞwith respect to f and t, respectively.

3.2.1 Data Split Subalgorithm (DSS)

The objective of DSS is to find the optimal proportion fa�
i of

the data amount that sensor i uploads to the SenCar at
anchor point a over the total data amount that sensor i gen-
erates in a gathering tour. We can characterize the marginal
cost for fa

i by the partial derivative of NEðf; tÞ with respect

to fa
i , NE0ðfÞ ¼ @NEðf;tÞ

@fa
i

¼ �a�
i y�i , which reflects the changing

rate of NEðf; tÞ with fa
i or the gain of data delivery from

sensor i to anchor point a. To minimize data gathering cost
NEðf; tÞ, sensor i should always transfer some of its data
destined to the anchor points with lower cost until fi

reaches equilibrium. If we let f�
i ¼ ffa�

i ja 2 Ag be the opti-
mal data split vector for sensor i, the optimal solution fa�

i to
P3(b) satisfies the following optimality condition:

fa�
i > 0¼) @NEðf�

i ; tÞ
@fa0

i

	 @NEðf�
i ; tÞ

@fa
i

; for all a0 2 A; (44)

which implies that sensor i always sends more data to the
anchor point that has the minimummarginal costNE0ðfÞ.

For sensor i, assume that ~a denotes the anchor point with

the minimum marginal cost, i.e., ~a ¼ argmina2A
@NEðf;tÞ

@fa
i

. In

the nth iteration, sensor i can update fa
i according to

fa
i ðnþ 1Þ ¼ fa

i ðnÞ þ dai ðnÞ; (45)

with

dai ðkÞ ¼
�min fa

i ðnÞ; kðnÞ @NEðf;tÞ
@fa

i
ðnÞ � @NEðf;tÞ

@f~a
i

ðnÞ
� �� �

ifa 6¼ ~a;
�Pa 6¼~a;a2A dai ðnÞ ifa ¼ ~a;

8>><>>:
where kðnÞ is a positive scalar stepsize.

By using a similar approach to that in [34], we can show
that such updating algorithm on f guarantees the

convergence to the optimal solution of P2. It is straightfor-
ward to verify that for sensor i

X
a2A

dai ðnÞ ¼ 0 and
X
a2A

dai ðnÞ
@NEðf; tÞ

@fa
i

	 0: (46)

We can see that
P

a2A dai ðnÞ @NEðf;tÞ
@fa

i
¼ 0 only if dai ðnÞ ¼ 0,

which requires that for all a 2 A

fa
i ðnÞ

@NEðf; tÞ
@fa

i

ðnÞ � @NEðf; tÞ
@f~a

i

ðnÞ
� �

¼ 0: (47)

We can observe from (46) that data split ratios per sensor
node only settle when the gains of data delivered from sen-
sor i to anchor point a have equalized (and thus are equal to
the node marginal cost) and the remaining unused anchor
points have lower gains.

The above updates show that for sensor i to determine
the data amount uploaded to the SenCar at anchor point a,
the data generating price message �a

i should be transferred
from the data control subalgorithm to the data split subal-
gorithm. Since there are jAj anchor points and jNj nodes,
the time complexity of this subalgorithm is OðjAjjN jÞ.
Besides, if data split amount fa

i is a constant, this subalgor-
ithm is not necessary. In this case, data split amount fa

i

becomes a factor affecting data generating price �a
i .

3.2.2 Sojourn Time Allocation Subalgorithm

The dual problem contains jAj sojourn time allocation sub-
problems. Since the SenCar has powerful transceivers and
high-density batteries (which can be recharged/replaced at
the base station), it can perform computations to allocate
the optimal sojourn time ta� at each anchor point. The opti-
mization goal in this subproblem is

min
t

NEðf; tÞ; s:t:
X
a2A

ta � T: (48)

We now verify the convexity of NEðf; tÞ with respect to t.
Since fðxÞ ¼ eax is convex on R for any a 2 R and

gðxÞ ¼ x�1 is convex on Rþþ , their composition ea=x is con-

vex on Rþþ. Thus function expðx
a�
ij

taBÞ is convex with respect to

ta > 0. The objective function NEðf; tÞ of problem (48) can
be simplified as

NEðf; tÞ ¼ Lðf; t; x�; y�; ~p�; ��;m�; y�; ��; h�Þ

¼ Constþ
X
a2A

X
i;j2N

y�ij
s2
ij

hij
exp

xa;�
ij

taB
� ~p�i

� �

þ
X
a2A

X
i;j2N

y�iju
X
k 6¼i

hkj

hij
exp

xa;�ij

taB
� ~p�i þ ~p�k

� �
;

where Const denotes the terms which are not related to ta.

The convexity of function expðx
a�
ij

taBÞ implies that both

expðx
a;�
ij

taB � ~p�i Þ and expðx
a;�
ij

taB � ~p�i þ ~p�kÞ are convex. Clearly,

NEðf; tÞ is convex with respect to ta. Furthermore, by taking
partial derivative of NEðf; tÞ with respect to ta, we obtain
the subgradient on ta at anchor point a as follows:
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rD3ðtaÞ ¼ �
X

ði;jÞ2Ea

y�ij
BðtaÞ2 exp

xa�
ij

taB

� �
=gijexpð~P�Þ: (49)

Introducing a new Lagrangian multiplier $a for constraint
ta � T , sojourn time ta and Lagrangian multiplier $a at
anchor point a can be updated by

taðnþ 1Þ ¼ ½taðnÞ � "ðnÞrD3ðtaðnÞÞ�T0 ; (50)

$aðnþ 1Þ ¼ ½$aðnÞ þ "ðnÞðtaðnÞ � T Þ�þ: (51)

We observe that the congestion price yij and the sojourn
time bound T determine the sojourn time of the SenCar at
anchor point a. Lagrangian multiplier $a can be referred to
as the price of sojourn time allocation at anchor point a,
which depends on the total sojourn time bound. Intuitively,
the higher the congestion price at an anchor point, the lon-
ger the sojourn time of the SenCar at this anchor point.
Another observation is that the sojourn time increases expo-
nentially with flow amount xa�

ij , but decreases linearly as

SINR gij becomes larger. This reflects the fact that gathering

more data needs longer sojourn time. A good channel con-
dition would be beneficial to reduce the sojourn time.

Note that for the SenCar to determine sojourn time, the
values of price y�ij, flow amount xa�

ij and SINR gij need to
be sent to the SenCar in each subgradient iteration of
STAS, which inevitably leads to larger overhead. To avoid
communication overhead, an alternative method is to let
each sensor determine the sojourn time at each anchor
point. In this case, each sensor i needs to compute local tai
rather than global ta for sensors by solving problem (48)
on tai . Such an approach only requires each sensor to com-
municate with direct neighbors on exchanging the corre-
sponding y�ij, x

a�
ij and gij. However, it results in slower

convergence than the former. Thus, there is a tradeoff
between communication overhead and convergence
speed. The subalgorithm for anchor point a is listed in
Table 4. The complexity of this subalgorithm is OðjAjÞ.
Finally, we summarize the distributed algorithm for
DaGCM problem in Table 5 and its corresponding work
flow is shown in Fig. 3. In the inner (lower) loop, sensors
search for optimal data rates, transmission powers and
flow rates as well as optimal prices of flow conservation,
energy balance, congestion and compatibility. In the outer
(higher) loop, sensors adapt to the data split vector based
on the stabilized prices in the inner loop while the SenCar
determines optimal sojourn time at different anchors.

Based on the above implementation and the time com-
plexity of each subalgorithm, we can obtain that the overall

time complexity of DaGCM algorithm is OðjAjjN j2 þ
jAjjN jÞ. Therefore, in the worst case, the time complexity of

the algorithm is OðjAjjNj2Þ and it is dominated by the
power control and compatibility subalgorithm.

4 PERFORMANCE EVALUATION

We have conducted extensive simulations to evaluate the
performance of the proposed DaGCM algorithm from dif-
ferent aspects. First, we use MATLAB simulation to vali-
date the convergence property of DaGCM algorithm and
evaluate its performance by comparing it with other data
gathering schemes. Then, we further conduct simulations
in NS-2 to evaluate DaGCM in a wireless network environ-
ment. We first present results obtained in MATLAB simu-
lations in Sections 4.1 and 4.2, and results obtained in NS-2
in Section 4.3.

For demonstration purposes, we consider a WSN with 30
sensors randomly scattered over a 100m
 100m square

TABLE 4
Sojourn Time Allocation Subalgorithm

for Anchor Point a

Initialize $a for a 2 A ;
Repeat for each a 2 A
Receive y�ij, x

�
ij and gij for all links ði; jÞ 2 Ea

Compute the subgradientrD3ðtaÞ by (49)
Update the sojourn time taðkÞ by (50);
Update Lagrangian multiplier$aðkþ 1Þ by (51);

Until f$aðkÞg converges to$a�.

TABLE 5
Distributed Algorithm for DaGCM Problem

For each sensor i 2 N do
Initialize data split variable fa

i ð0Þ for all a 2 A,P
a2A fa

i ð0Þ ¼ 1;
Initialize sojourn time variable tað0Þ for all a 2 A,P

a2A ta � T ;
Repeat: High-level optimization iterations
Initialize �a

i ð0Þ, mði;mÞð0Þ, yijð0Þ, �ið0Þ and hmð0Þ
to non-negative values for all j : ði; jÞ 2 Ea,m 2 N and
a 2 A;
Repeat: for all j : ði; jÞ 2 Ea and a 2 A at Low-level
optimization
Compute yiðkÞ by DCSA as shown in Table 1;
Compute epiðkÞ and epmðkÞ and
determine compatibility of noes i andm by PCSA
in Table 3;
Compute SINR gij and send it to neighbor nodes and
SenCar;
Compute xa

ijðkÞ by RSA as shown in Table 2;
Update �a

i ðkþ 1Þ, mði;mÞðkþ 1Þ, yijðkþ 1Þ, �iðkþ 1Þ and
hmðkþ 1Þ by (38), (39), (40), (41) and (42) respectively;
Send the updated Lagrangian Multipliers to its
neighbors;
Send the updated yij and xa

ij to SenCar;
Until f�a

i ðkÞg, fmði;mÞðkÞg, fyijðkÞg, f�iðkÞg and fhmðkÞg
converges to �a�

i , m�
ði;mÞ , y

�
ij, �

�
i and h�m respectively;

Adjust data split variables fa
i by (45) in DSS;

SenCar simultaneously computes ta by STAS in Table 4;
Until ffa

i ðnÞg and ftag converge to fa�
i and ta�;

End For

Fig. 3. Framework for the distributed algorithm.
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area and four anchor points are selected, as shown in Fig. 1.
We set the radius of the coverage area of each anchor point
to 30m and assume that each link is under Rayleigh fading.
The moving velocity of the SenCar is 0.8 m/s and the band-
width B is set to 1 Mbps. To apply Slepian-wolf coding in
the simulations, sensors first encode data packets according
to [20], [21] and transmit those packets at computed
Slopian-Wolf rates to the SenCar resided at the anchor
points. After receiving the packets, the SenCar applies the
decoding strategy to recover sensing data. For clarity, we
take anchor points a1 and a2 as observation objects and
other parameter settings such as energy consumption bud-

get Wi, minimum and maximum transmission powers pmin
ij

and pmax
ij , energy consumed per unit flow eij, ratio of time

rði;mÞ, etc, are listed in Table 6. All the results are averaged
over 100 simulation runs.

4.1 Convergence and Performance Analysis

In this section, we study the convergence property and ana-
lyze the performance of the proposed DaGCM algorithm.
We define the cost function as NCi ¼ wi ðPa R

a
i t

aÞ2 or

equivalently NCi ¼ wi ðyiÞ2, where wi indicates the cost
weight for sensor i. We let the iteration step size of the

DCSA "ðkÞ ¼ 1þb
kþb

, where b is a fixed positive integer. From

Theorem 2, we know that the step size function can guaran-
tee the gathered data amount yi to converge to its optimal
value y�i . Therefore, we can obtain y�i for the overall cost.

We examine the total data gathering costs of sensors 2
and 4 at anchor point a1 and sensors 7 and 11 at anchor
point a2, whose cost weights w2, w4, w7 and w11 are set to
0.4, 0.78, 0.8 and 0.2, respectively. Fig. 4a shows the evolu-
tion of the total data gathering cost at the two anchor points
versus the number of iterations. It can be seen from Fig. 4a
that the data gathering cost oscillates greatly at the begin-
ning of iterations, then fluctuates slightly, and finally con-
verges. As the stepsize becomes smaller, the algorithm
becomes more stable and achieves convergence. The over-
head of the proposed algorithms involves energy consumed

to converge to an optimal solution (or within 5 percent of
fluctuations). In Fig. 4, we can see the data gathering cost
and data amount variables can converge fast to an optimum
within only 50 iterations. Since the solution for assigning
data rates and link flow is pre-computed in a one time effort
for each round, the control messages are sent less frequently
than data packets. Because the size of the control messages
is also much smaller, compared to the amount of data gath-
ered, the overhead from control messages can be ignored.

Fig. 4b shows the evolution of total amount of data yi
generated from sensor i (i ¼ 2; 4; 7; 11) in a data gathering
tour versus the number of iterations. It can be observed that
since sensor 11 has a smaller cost weight compared to other
sensors, in a data gathering tour, the SenCar preferentially
gathers more data from it. In particular, y7 has larger fluctu-
ation and longer convergence time. We further observe that
although sensors 4 and 7 have almost the same cost weights,
the amount of data generated by sensor 4 is clearly more
than sensor 7. This is justifiable since sensor 7 has to restrain
from generating more data and reserve the suitable buffer
size to avoid congestion, which in turn makes the SenCar
stay longer time at anchor point a2 than at anchor point a1.
Thus, the optimal sojourn time for the two anchor points is
ta1� ¼ 23:4 and ta2� ¼ 56.2, respectively.

It is worth noting that in Fig. 4, even the data collection
cost or total data amount is lower at a smaller number of
iterations than that at a larger number of iterations when
the algorithm converges, we still consider the latter is opti-
mal. This is because that for a smaller number of iterations,
DaGCM algorithm is unstable and still in oscillation,
whereas by subalgorithms in Tables 1, 2, 3, and 4, the opti-
mum we want to obtain is the variable values when
DaGCM algorithm converges. Thus, we take the data gath-
ering cost in Fig. 4a and the data amount in Fig. 4b with a
larger number of iterations as their optimum in case of
convergence.

Fig. 5 shows the comparison between the total data
amount and the effective data amount for sensors 2; 4; 7 and
11. Here, effective data is the data that should be actually col-
lected (i.e., no redundant data) for the application, such as
environment monitoring. In this simulation, to clearly char-
acterize the effect of data redundancy on the effective data
amount, we let the correlation parameter W ¼ 0:95, the
sensing range of each sensor be 200 m, and the spatial dis-
tances of sensor pairs ð1; 2Þ; ð3; 4Þ; ð5; 4Þ; ð5; 2Þ and ð7; 4Þ at
anchor point a1 be 80, 50, 100, 250 and 80 m, respectively.
Also, we let the spatial distances of sensor pairs
ð6; 7Þ; ð7; 8Þ; ð9; 10Þ and ð10; 11Þ at anchor point a2 be 150,
100, 150, 100 and 80 m, respectively. According to the data

TABLE 6
Parameter Settings

Notation Value Notation Value

Wi ,8i 2 N 1.25*104 T 80
pmin
ij ; ði; jÞ 2 Ea 1 mw sij 10�7

pmax
ij ; ði; jÞ 2 Ea 100 mw B 1M

eij 0.007d2ij rði;mÞ 0.05*maxðxi; xmÞ

Fig. 4. (a) Evolution of data gathering cost. (b) Evolution of total amount
of data generated.

Fig. 5. Comparison between the total data amount and the effective data
amount for sensors 2; 4; 7 and 11.
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all sensors use the same flow rate to upload data without
power control. For the sake of fairness, the flow rate each
sensor uses in Fixed-Rate is the allowable maximum rate
that can avoid traffic congestion in the network. Unless oth-
erwise stated, the network topology and parameters are the
same as those in Section 4.1.

Fig. 8a plots the data gathering cost of DaGCM, Shortest-
Path and Fixed-Rate when the bound of data gathering
latency T varies from 50 to 300 s. It is observed that the data
gathering costs of the three algorithms decrease as T
increases. This is because that the convexity of the cost func-
tion leads to the minimization of the aggregated data gath-
ering cost when each sensor splits its data and uploads
them to the SenCar at different anchor points. Meanwhile,
we also observe that compared to other two algorithms,
DaGCM algorithm pays the lowest price for collecting the
same amount of data. It is reasonable since DaGCM algo-
rithm jointly takes into account of optimal data transmission
rate, optimal routing path and optimal transmission power
instead of only the shortest routing path or maximum flow
rate. When T becomes sufficiently large, such as T > 280 s,
all the algorithms reach the same minimum data gathering
cost, which indicates that T no longer affects the data gath-
ering cost. On the other hand, once T becomes sufficiently
large, the sensors closer to the SenCar would ultimately
deplete their energy budgets due to forwarding a large
number of data packets from other sensors. As a result, the
data gathering cost keeps unchanged as no more data can
be uploaded to the SenCar.

Fig. 8b depicts the comparison of data gathering latency
of DaGCM, Shortest-Path and Fixed-Rate when the number
of sensors varies from 10 to 200. T is set to 4:5jNj to ensure
sensors can upload a sufficient amount of data to the SenCar
at different anchor points. It can be seen from the figure that
the data gathering latency increases in all the algorithms as
the number of sensors increases. This is because that the
increase of sensors leads to more data packets and forces
the SenCar to spend more sojourn time to gather data,
which in turn results in the increase of the data gathering
time. Another observation from this figure is that DaGCM
algorithm always achieves the lowest data gathering
latency. For example, when jNj ¼ 150, DaGCM algorithm
results in 23.5 and 37.9 percent less data gathering latency
than Shortest-Path and Fixed-Rate, respectively. Especially,
the difference of the data gathering latency among the three
algorithms gradually becomes larger with the increase of
the number of sensors. Although the Shortest-Path algo-
rithm guarantees the shortest routing path, it cannot avoid

the traffic congestion. Meanwhile, the Fixed-Rate algorithm
can ensure allowable maximum flow rate to deliver data
packets, but routing path and portion of data delivered to
different anchor points may not be optimal.

Fig. 9a compares the total energy consumption when the
number of sensors varies from 10 to 200. Clearly, for all
three algorithms, the total energy consumption increases as
the number of sensors increases. Compared to Fixed-Rate,
both DaGCM and Shortest-Path have lower energy con-
sumption. Such tendency becomes more distinct with the
increase of the number of sensors, which is attributed to the
critical role that power control plays in reducing energy
consumption. DaGCM has the least energy consumption
because of joint cross-layer design to take a basket of varia-
bles for optimization (data control, data routing, power con-
trol, data split and sojourn time allocation). In contrast,
Shortest-Path may cause traffic congestion on some “hot”
links shared among many routing paths due to link capacity
constraint, which in turn leads to more packet loss and
energy consumption. In Fixed-Rate algorithm, all sensors
upload data at their allowable maximum flow rates, but
there is no power control to govern energy consumption.
Thus, the achieved maximum flow rate is at the cost of
more energy consumption.

4.3 Simulation Results in NS-2

We also implement the proposed algorithms using network
simulator NS-2 [35] and evaluate the data gathering cost in
case of node failure. NS-2 is a discrete event-driven simula-
tor targeted at networking research, and able to simulate
the dynamics of almost all network protocols. Here, we
implement data rate control and data split subalgorithm at
the transport layer, routing subalgorithm at the network
layer, and power control and compatibility subalgorithm at
the physical layer. In each frame, it is determined which
sensor nodes can simultaneously transmit OFDM-modu-
lated symbols to the SenCar. Once a sensor node detects
that its channel to the SenCar is idle, it adaptively distrib-
utes its data over all subcarriers by selecting appropriate
constellations based on channel conditions on each subcar-
rier, and transmits the data over different subcarriers. Then
the SenCar separates the superposed data streams from
compatible nodes as defined in Section 2.5 by processing
the signal vectors received at its two antennas based on (9).
The routing protocol integrates our RSA with original
Ad hoc On-Demand Distance Vector Routing (AODV) pro-
tocol. All results are averaged over 100 random simulations
and each simulation is 80 seconds.

Fig. 9. (a) Comparison of energy consumption when the number of sen-
sors varies from 10 to 200. (b) Total data gathering cost in case of node
failure.

Fig. 8. (a) Comparison of data gathering cost versus bound of data gath-
ering latency. (b) Data gathering latency with the number of sensors
varies from 10 to 200.
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We randomly scatter 100 nodes in a 1; 000
 1; 000m2

field and select 15 anchor points using the methods in [18].
We use a mobile node with two omni-antennas as the Sen-
Car. Its moving speed is 1 m/s. Inter-node distance is set to
50 m. The transmission range and interference range vary
with the transmission power and the channel status. We
assume that at the time of 40 s, 10 nodes deplete their energy
due to unexpected external events and demonstrate the
change of data gathering cost in Fig. 9b. We observe that
when there are nodes deplete their energy, the total data
gathering cost increases. The reason behind the observation
is that the sudden failures of 10 nodes break the previous
routing balance, and force the sources to discover new data
forwarding routes, which in turn leads to the increase of
flow conservation prices and data gathering cost. The step-
up of cost also indicates our proposed algorithms can adapt
to current network conditions very well and converge fast
in case of sudden node failures.

We further explore the performance comparison between
DaGCM algorithm and other mobile data gathering strate-
gies such as MST in [6] and MDC/PEQ in [5] in terms of
total data gathering costs and total energy consumption.
MST is a distributed algorithm for computing the maximum
lifetime of a sensor network which routes data to a mobile
sink. MDC/PEQ protocol employs mobile data collectors
(MDCs) that broadcast beacons periodically. Fig. 10 shows
the total data gathering costs for different amount of data
gathered and total energy consumption over time. It can be
seen from Fig. 10a that compared to MST and MDC/PEQ,
DaGCM algorithm spends the least cost to collect the same
amount of data. The reason is that MDC/PEQ protocol
emphasizes on building the cluster of mobile data collectors
and updating routing information of sensor nodes while the
MST strategy focuses on maximizing the lifetime of the net-
work. Neither of them aim to minimize the data gathering
cost. Fig. 10b shows that the total energy consumed by
DaGCM algorithm is much less than other two algorithms
(almost half of the MDC/PEQ algorithm). This is because
that although both MST and MDC/PEQ account for power
constraints, neither of them employ transmission power
control to reduce energy consumption.

5 CONCLUSIONS

In this paper, we have designed a cross-layer optimization
framework for mobile data gathering in WSNs considering
elastic link capacity and power control on sensors. By
enabling concurrent data uploading, we first formulate the
problem to minimize total data collection cost under the

constraints of flow conservation, energy budget (power con-
trol), elastic link capacity and compatibility among sensors.
Then, by introducing auxiliary variables, we transform the
non-convex problem into a convex one and further decom-
pose it into several subproblems of data control and data
split at the transport layer, routing at the network layer, and
power control and compatibility decisions at the physical
layer. We employ subgradient iterative approach to solve
the problem and present several distributed subalgorithms
with explicit message passing. Extensive numerical results
demonstrate the proposed algorithm achieves convergence
within 50 iterations. The simulation results demonstrate
that our framework outperforms the schemes without con-
current data loading and power control in terms of data
gathering cost, latency and energy consumption.

Finally, there are some interesting issues to be further
explored in future. First, the performance gains compared
to system complexity using MMSE receivers should be fur-
ther studied. Second, the cost function used in this paper
may not completely reflect the overall pricing structure in
the network. Therefore, a more comprehensive model that
accounts for aspects from sensor’s transmission/reception
energy, buffer, encode/decode, moving energy and human
administration cost may be considered in future.
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