
E. Verification at Client Side
Correctness verification. The correctness verification at
the client side is straightforward. The client uses the
server’s proofs to verify that the itemset that each MPB
node corresponds to is frequent by running the set intersec-
tion verification protocol. Though simple, sending proofs of
only MPB nodes to the client raises two new issues. The
first issue is that the client must ensure that the server has
computed the proof of all MPB nodes of FS ; missing
the proof of any MPB node may enable the server to
escape from the verification. A naive method to verify the
completeness of MPB nodes is that the client re-computes
MPB from FS , which may end up with high time cost. We
design a more efficient method as following. Given FS and
the MPB nodes that are returned by the server, for each
itemset I ∈ FS , the client verifies whether there exists a
MPB node whose corresponding itemset I ′ satisfy that
I ⊆ I ′. If it does not, the client concludes that the server
misses the proof of at least one MPB node.

Another issue is that the client needs to ensure that all
MPB nodes are honestly constructed from FS , not from
the (correct) mining result of D. Otherwise, the server
may be able to escape from the verification. This can be
achieved by verifying: (1) for each MPB node P , whether
there exists an itemset I ′ ∈ FS such that I ′ ⊆ I , where
I is the corresponding itemset of P ; and (2) for each
itemset I ∈ FS , whether there exists a MPB node whose
corresponding itemset I ′ satisfies that I ⊆ I ′.
Completeness Verification. First, the client has to verify
that the server does not miss the proof of any MNB node.
To do this, the client can construct MNB from MPB,
assuming that it has verified that the proof of MPB nodes
is correct and complete.

Assume now the server has passed the verification of
MNB nodes, next, the client uses the proof of MNB
nodes to prove the completeness of returned frequent
itemsets (i.e., each itemset that is not returned must be
infrequent). Before we discuss how the client verifies the
completeness, we categorize the possible missing frequent
itemsets into four types, based on their relationships with
the returned frequent itemsets FS . In particular, consider
a frequent itemset I that is not returned by the server, it
should belong to one of the following four types:
• Type-1 (non-overlap): For each itemset I ′ ∈ FS , I ∩
I ′ = ∅.

• Type-2 (subset): There exists a frequent itemset I ′ ∈
FS such that I ⊆ I ′.

• Type-3 (superset): There exists a frequent itemset
I ′ ∈ FS such that I ′ ⊆ I .

• Type-4 (overlap): There is no frequent itemset I ′ ∈
FS such that I ⊆ I ′ or I ′ ⊆ I . However, there exists
a frequent itemset I ′ ∈ FS such that I ∩ I ′ 6= ∅.

Next, we describe how to verify these four types of
missing frequent itemsets respectively.
Verification of type-1 missing itemsets. Since type-1
itemsets do not overlap with any frequent itemset in FS ,
any type-1 missing itemset must only contain frequent 1-
itemsets that do not appear in FS . Therefore, to verify

whether there is any type-1 missing frequent itemset, the
client checks whether all frequent 1-itemsets of D are
included in FS . If it does not, the client can conclude
that there must exist at least one type-1 missing frequent
itemset. The complexity of verification is O(|FS |), as
its major effort is to collect unique items in FS . Proof-
based verification is not needed. The frequent 1-itemsets
are collected when the client constructs the inverted index.
Verification of type-2 missing itemsets. This is equivalent
to verifying whether all subsets of each itemset I ∈ FS also
exist in FS . To do this, the client verifies whether for each
MPB node, all subsets of its corresponding itemset are
included in FS . In this case, as long as I is frequent (veri-
fied by correctness verification), this verification procedure
does not need to use any proof.
Verification of type-3 & type-4 missing itemsets. If there
is any type-3/type-4 frequent itemset missing, the MNBs
of FS include at least one node whose corresponding
itemset is frequent. Therefore, the client verifies whether
there exists any type-3/type-4 missing frequent itemsets
by verifying the infrequentness of each MNB node via
its proof (Section IV-B). If there exists any MNB node
whose proof cannot show it is infrequent, there exists at
least one type-3/type-4 missing itemset. The complexity of
verification is O(X), where X =

P
∀I∈MNB |I|.

F. Security Analysis
In this section, we will prove that although we reduce the

number of proofs greatly, our verification optimization still
provides the same security guarantee as our basic approach
which requires correctness proofs for all itemsets in FS and
completeness proofs for all itemsets that do not appear in
FS , denoted as FS . Following our verification procedure,
the client only checks proofs of MPB and MNB nodes.

In the aspect of correctness verification, as now the
client only verifies the frequentness of all MPB nodes,
our optimization eliminates the correctness proofs of all
itemsets in FS − MPB. Next, we will show that for
each itemset in FS −MPB, its proof can be consumed
by the proof of at least one itemset in MPB. Note that
for each itemset I in FS − MPB, there must exists
an MPB itemset I ′ such that I ⊆ I ′. According to
the upward closure of frequentness property of frequent
itemsets, the frequentness of the MPB itemset I ′ ensures
the frequentness of I .

Our completeness verification optimization only needs
the proofs of MNB nodes of FS . Similar to the proof
above, we will show that for each itemset in FS −MNB,
its proof can be consumed by the proof of at least one
itemset in MNB. Here for each itemset I ′ ∈ FS−MNB,
there must exists an MNB itemset I ′ such that I ′ ⊆ I .
According to the downward closure of infrequentness prop-
erty, the infrequentness of the MNB itemset I ′ ensures the
infrequentness of I .

G. Robustness Analysis

Robustness against Type-1 server. As the deterministic
approach does not modify the outsourced data, the prior
background knowledge about the data distribution does not
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transactions in R1 dataset where transaction lengths are of
skewed distribution.
Amounts of artificial transactions. We measured the
amount of inserted artificial transactions compared with
the size of the database. In particular, let t be the number
of artificial transactions to be inserted, we measured the
ratio r = t

n , where n is the number of real transactions
in D. As shown in Figure 5 (a), for Retail dataset, the
inserted artificial transactions only take a small portion
of the original database (no more than 0.01025%). On
the other hand, we observed that the ratio of artificial
transactions is not increasing with the α and β values. That
is because the number of artificial tuples is bounded to
the minsup, i.e., the number of artificial transactions is at
most minsup − 1. We also measured the mining overhead
introduced by artificial transactions. Figure 5 (b) shows the
result. It is expected that the mining overhead is negligible.

3) Correctness Verification: Time Performance. We
measure the time for correctness verification preparation
that satisfy (α2, β2)-correctness on NCDC dataset. The
result is shown in Figure 6 (a). It is not surprising that
it needs more time to construct EIs for higher α2 and
β2 values. Furthermore, when β2 = 0.9 and 0.99, EI
construction is very fast (no more than 1 second). This is
because for these cases, all EIs are real infrequent itemsets;
there is no need to remove any item. However, when β2

grows to 0.999, the preparation time jumps to 400 - 600
seconds, since now the algorithm needs to find more itemset
candidates from deeper level of the lattice to be EIs as
well as the items to be removed to make EIs infrequent.
We also measure the EI construction time of R1 dataset.
It does not increase much when β2 increases from 0.9 to
0.999, since all EIs are real infrequent items.
Amounts of removed items. We measure the amount of
item instances that are removed by EI construction. In
particular, let d be the number of item instances to be
removed, we measure the ratio r = d

|D| . The result of
NCDC dataset is shown in Figure 6 (b). It can be seen that
the number of item instances to be removed is a negligible
portion (no more than 0.045%) of NCDC dataset. There
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is no item that is removed from R1 dataset, as it has a large
number of infrequent 1-itemsets, which provides sufficient
number of EI candidates. This shows that we can achieve
high correctness guarantee to catch small errors by slight
change of the dataset.

4) Outsourcing versus mining locally.: We also com-
pared the time of executing frequent itemset mining locally
with the time of verification preparation by measuring the
ratio tV P /tDM , where tV P and tDM are the time of
verification preparation and frequent itemset mining. Figure
7 shows the result of NCDC dataset. It can be seen that
our verification preparation is always cheaper than mining
locally. This convinces the client to outsource her data
mining task to the server and prepare for verification locally
with affordable overhead.
C. Deterministic Approach

In this section, we measure the performance of proof
construction at the server side and verification at the client
side and explored various factors that impact the verifica-
tion performance of our deterministic approach, including
various error ratio, frequent itemsets of different lengths,
and different database sizes. We set the support threshold
on R1 dataset to be 50.

1) Proof Construction at the Server Side: In this section,
we show the experiments of proof preparation at the server
side.
Time performance. First, we measure the time of prepar-
ing one single proof of (in)frequent itemsets of various
lengths. We show the preparation time for itemsets of size
up to six because in our main experiment, the size of
itemsets to be verified is no more than six. As shown
in Figure 8 (a), the proof preparation time increases with
the length of frequent itemset. This is consistent with our
theoretical analysis (Section IV-H) that the complexity of
proof construction is dependent on the size of mining result,
not on the input dataset.

Second, we measure the total time of preparing all
the proofs for verification. Figure 8 (b) shows the total
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preparation time for various error ratios. We consider the
same error ratios p = 1%, 2%, 5%, 10%, and 20% that we
used for simulation of malicious actions. First, we observe
that for correctness verification the proof preparation time
increases slowly with the increase of error ratio. It is
obvious that adding infrequent itemsets to the mining result
leads to more MPB nodes. Indeed, the number of MPB
nodes change much. For example, when p changes from
10% to 20%, the number of MPB nodes changes from
32 to 40. However, the total proof construction time does
not increase much, since the proofs of new MPB nodes,
which indeed correspond to infrequent itemsets, can be
constructed very fast, due to the reason that the polynomial
Pj [21] used in their subset witness and set completeness
witness is of low degree. Second, the result shows that
the proof preparation time for completeness verification
decreases when the error ratio increases. We studied how
MNB nodes change when the error ratio grows. Our
results show that the MNB nodes move to the higher levels
of the LTST tree when more frequent itemsets are missing.
This is because now those missing frequent itemsets were
changed to be NB nodes, while their ancestor nodes in
the LTST tree become MPB nodes. As MNB nodes are
constructed from the children and sibling of MPB nodes,
there are fewer MNB nodes especially due to the fact
that higher LTST nodes have fewer children. For instance,
when the error ratio changes from 2% to 5%, the number
of completeness proofs changes from 33 to 27.
Proof size. First, we measure the optimization ratio of
proofs for the mining results of various error ratios. We
define the optimization ratio as 1− p1/p1, where p1 is the
number of proofs by our optimization, and p2 is the number
of proofs by the basic approach. Intuitively, the closer the
optimization to 1, the better. Figure 9 (a) displays the
optimization ratio. We observe that the optimization ratio of
the number of completeness proofs is very close to 1. This
is because the basic verification approach needs to construct
(2|I| − |FS |) proofs (for this experiment |I| = 100 and
|FS | = 97) for completeness verification, our optimized
approach only needs no more than 34 completeness proofs.
This proves that our optimization can reduce the number of
proofs dramatically. We also observe that the optimization
ratio of the number of correctness proofs deceases when the
error ratio increases. The reason is that adding infrequent
itemsets into the result leads to more MPB nodes and
thus the number of proofs, which decreases the optimization
ratio. Nevertheless, the optimization ratio of the number of
correctness proofs is high; it is at least 0.6 even when the
error ratio is 20%.
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Fig. 10: Verification Time at the Client Side

Second, we measure the total size of the proofs for the
mining result with various error ratio. Figure 9 (b) shows
the result. It is not surprising that the trend of total size of
the proofs is consistent with the trend of number of proofs
(Figure 9 (a)). In particular, the total size of completeness
proofs decreases dramatically when the error ratio grows.
The reason is similar to our analysis of the number of
proofs: as MNB nodes move to the higher levels of the
LTST tree, both the number of MNB nodes and the
length of their corresponding itemsets decrease. This lead
to the decrease of the total size of the completeness proofs.
Regarding the correctness proofs, since the number of
MPB nodes and the number of correctness proofs increase,
the total size of correctness proofs increases.

We also measure the total size of the proofs, with MPB
and MNB nodes of various lengths. It is not surprising
that the size of proofs grows with itemsets of larger size,
as the space complexity is dependent on the size of output
frequent itemsets. We omit the results due to limited space.

2) Verification Time at the Client Side: First, we measure
the verification time at the client side for mining result with
various error ratios. From the result shown in Figure 10 (a),
first, we observe that both completeness and correctness
verification are very fast. Second, we observe that the
completeness verification time decreases dramatically when
the error ratio increases from 2% to 5%, then keeps stable
afterwards. We analyzed the reason, and it turned out that
when the ratio equals to 2% (1% as well), the incomplete
itemsets were caught by checking against the proofs, while
for the error ratio changes to 5% and more, the incomplete
itemsets were caught by missing at least one proper subset
or one frequent 1-itemset, which is much faster than using
proofs. Third, we observe that the correctness verification
time drops sharply when the error ratio changes from
1% to 5%. The reason is that higher error ratio leads to
larger chance that the client catches an infrequent itemset
earlier. When the error ratio increases from 5% to 20%, the
verification time is stable because now the client can catch
the infrequent itemset by the first trial.

To measure the scalability of our verification approach,
we measure the verification time on datasets of different
sizes. The result is shown in Figure 10 (b). We observe
that our verification scheme is very fast even for very large
datasets. For example, for the dataset of 88162 transactions,
it only requires 0.001045 seconds for verification.

3) Client VS. Server: We compared the time perfor-
mance at both the client and the server sides for various sup-
port threshold values. We vary the support threshold values
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so that the number of frequent itemsets is approximately
1%, 5%, and 10% of the number of transactions. Table
II shows the comparison result. First, it is not surprising
that the verification time at the client side increases with
the growth of the number of frequent itemsets. The same
pattern also holds for the server side. Second, in all of our
testings, the total overhead at the client side is much smaller
than that at the server side. Furthermore, the verification
procedure at the client side is much faster than the mining
at the server side. This proves that the client can outsource
the mining task to the server, while verifying the result
integrity with the cost that is cheaper than mining locally.

minsup # of Freq. Client side Server side
Itemsets Verify Proof prep. mining

402 10 0.000164 24.72 0.03707
203 50 0.001358 266.985 0.08984
157 99 0.00332 572.591 0.1355

TABLE II: Client VS. Server w.r.t Time Performance (S1 dataset)
4) Scalability: We measured the time performance on

the datasets of various sizes. Figure 11 (a) shows that the
time of constructing one single proof increases with the
data size. However, the proof can be constructed fast; it
only needs 35 seconds even for a dataset of 106 records.
Figure 11 (b) shows that the verification time does not
change much with the data size, since: (1) the verification
complexity is decided by the number of MII and MFI
itemsets, and (2) the verification procedure always catches
the first incomplete itemset by type-1/2 checking for most
of the cases. Similar observations hold on the Retail dataset
(88162 transactions); it only requires 0.001045 seconds for
verification. This convinces us that our approach can be
used for efficient verification of outsourced frequent itemset
mining.
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Fig. 11: Scalability (error ratio=1%)

D. Probabilistic VS. Deterministic Approaches
We ran experiments to compare the performance of our

probabilistic and deterministic approaches. Table III shows
the comparison result on S3 dataset of various settings.
We pick the error ratios of 1%, and vary the probabilistic
guarantee threshold from 90% to 100% (probability =
100% corresponds to our deterministic approach). Table III
shows the details of the comparison result. In general, the
deterministic approach brings higher overhead at the server
side than the probabilistic approach. However, this is the
sacrifice that we have to pay for higher result integrity
guarantee. We also observe that in some cases (marked
as N/A in Table III), the probabilistic approach fails as it
cannot provide required probabilistic correctness guarantee
due to the data distribution. The deterministic approach
does not have such limit.

Error Integrity Type Client Server
ratio Prob. Verify Proof prep. Mining

1% 90% R N/A 0 0.042
M 1.433 0 1024.53

1% 95% R N/A 0 0.042
M 0.945 0 1204.59

1% 99% R N/A 0 0.042
M 0.689 0 1498.67

1% 100% R 0.000628 1660.12 0.5707
M 0.4123 2785.6 0.5707

TABLE III: Time performance: deterministic V.S. proba-
bilistic approaches (S3 dataset; R: correctness, M : com-
pleteness)
E. Comparison with Existing Work

Among all the related work, [14] and [22] are the closest
to ours. It has been proven that the evidence patterns con-
structed by the encoding method in [14] can be identified
even by an attacker without priori knowledge of the data
[11]. We argue that our probabilistic verification approach is
robust against the attack in [11]. Besides, our probabilistic
approach is more efficient. In [14], it shows that it may
take 2 seconds to generate one evidence pattern, while our
method only takes 600 seconds to generate 6900 evidence
itemsets (i.e., 0.09 second per pattern).

Goodrich el al. [22] propose an efficient cryptographic
approach to verify the result integrity of web-content
searching by using the same set intersection verification
protocol as ours. It shows that the time spent on the server
to construct the proof for a query that involves two terms
is between 0.35 to 0.8 seconds. Our deterministic approach
requires 0.5 seconds to construct the proof for an itemset of
length 2 at average, which is comparable to the performance
of [22].

VII. RELATED WORK
The problem of verifiable computation was tackled pre-

viously by using interactive proofs [7], probabilistically
checkable proofs [2], and non-interactive verifiable com-
puting [5]. This body of theory is impractical [13], due
to the complexity of the algorithms and difficulty to use
general-purpose cryptographic techniques in practical data
mining problems. To reduce the complexity, Goodrich et al.
[21] design efficient cryptographic approaches to verify the
correctness of keyword search by using Bilinear pairings
and Merkle hash trees. A large body of work design
authenticated data structures (e.g., [21], [12]) that provide
a cryptographic proof of the answer to a query. These work
focus on query evaluation and set operations.

In the last decade, intensive efforts have been put on
the security issues of the database-as-a-service (DaS)
paradigm (e.g., [8], [9]). The focus is the correctness of
SQL query evaluation. Only until recently some attention
was paid to the security issues of the data-mining-as-a-
service (DMaS) paradigm [11], [6]. However, most of
these work only focus on how to encrypt the data to protect
data confidentiality and pattern privacy, while we focus on
integrity verification of mining result.

There is surprisingly very little research [14], [10] on
result correctness verification in the DMaS paradigm.
Among these work, only [14] focused on integrity ver-
ification methods for frequent itemset mining. Its basic
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idea is to insert some fake items that do not exist in
the original dataset into the outsourced data; these fake
items will construct a set of fake (in)frequent itemsets.
The correctness of mining results is verified against the
fake (in)frequent itemsets. Though effective, this method
assumes that the server has no background knowledge of
the items in the outsourced datasets, and thus it has equal
probability to cheat on the fake and true itemsets. We argue
that using fake items cannot catch our type-1 malicious
server that may have some background knowledge of the
original data and be able to escape the verification by
distinguishing between real and fake items. We aim at
designing effective verification approaches that can catch
the incomplete/incorrect frequent itemsets from such a
malicious server.

VIII. CONCLUSION
In this paper, we present two integrity verification

approaches for outsourced frequent itemset mining. The
probabilistic verification approach constructs evidence
(in)frequent itemsets. In particular, we remove a small set
of items from the original dataset and insert a small set of
artificial transactions into the dataset to construct evidence
(in)frequent itemsets. The deterministic approaches requires
the server to construct cryptographic proofs of the mining
result. The correctness and completeness are measured
against the proofs with 100% certainty. Our experiments
show the efficiency and effectiveness of our approaches.

An interesting direction to explore is to extend the model
to allow the client to specify her verification needs in terms
of budget (possibly in monetary format) besides precision
and recall threshold.
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