
Towards Differential Query Services in
Cost-Efficient Clouds

Qin Liu, Chiu C. Tan, Member, IEEE, Jie Wu, Fellow, IEEE, and Guojun Wang, Member, IEEE

Abstract—Cloud computing as an emerging technology trend is expected to reshape the advances in information technology.
In a cost-efficient cloud environment, a user can tolerate a certain degree of delay while retrieving information from the cloud to
reduce costs. In this paper, we address two fundamental issues in such an environment: privacy and efficiency. We first review a
private keyword-based file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files
of interest from an untrusted server without leaking any information. The main drawback is that it will cause a heavy querying
overhead incurred on the cloud and thus goes against the original intention of cost efficiency. In this paper, we present three efficient
information retrieval for ranked query (EIRQ) schemes to reduce querying overhead incurred on the cloud. In EIRQ, queries are
classified into multiple ranks, where a higher ranked query can retrieve a higher percentage of matched files. A user can retrieve files
on demand by choosing queries of different ranks. This feature is useful when there are a large number of matched files, but the
user only needs a small subset of them. Under different parameter settings, extensive evaluations have been conducted on both
analytical models and on a real cloud environment, in order to examine the effectiveness of our schemes.

Index Terms—Cloud computing, cost efficiency, differential query services, privacy

Ç

1 INTRODUCTION

CLOUD computing as an emerging technology is ex-
pected to reshape information technology processes in

the near future [1]. Due to the overwhelming merits of
cloud computing, e.g., cost-effectiveness, flexibility and
scalability, more and more organizations choose to out-
source their data for sharing in the cloud. As a typical cloud
application, an organization subscribes the cloud services
and authorizes its staff to share files in the cloud. Each file
is described by a set of keywords, and the staff, as
authorized users, can retrieve files of their interests by
querying the cloud with certain keywords. In such an
environment, how to protect user privacy from the cloud,
which is a third party outside the security boundary of the
organization, becomes a key problem.

User privacy can be classified into search privacy and
access privacy [2]. Search privacy means that the cloud
knows nothing about what the user is searching for, and
access privacy means that the cloud knows nothing about
which files are returned to the user. When the files are
stored in the clear forms, a naBve solution to protect user

privacy is for the user to request all of the files from the
cloud; this way, the cloud cannot know which files the user
is really interested in. While this does provide the
necessary privacy, the communication cost is high.

Private searching was proposed by Ostrovsky et al. [3], [4]
(referred to as the Ostrovsky scheme in this paper), which
allows a user to retrieve files of interest from an untrusted
server without leaking any information. However, the
Ostrovsky scheme has a high computational cost, since it
requires the cloud to process the query (perform homomor-
phic encryption) on every file in a collection. Otherwise, the
cloud will learn that certain files, without processing, are of
no interest to the user. It will quickly become a performance
bottleneck when the cloud needs to process thousands of
queries over a collection of hundreds of thousands of files.
We argue that subsequently proposed improvements, like
[5], [6], also have the same drawback. Commercial clouds
follow a pay-as-you-go model, where the customer is billed
for different operations such as bandwidth, CPU time, and
so on. Solutions that incur excessive computation and
communication costs are unacceptable to customers.

To make private searching applicable in a cloud environ-
ment, our previous work [7] designed a cooperate private
searching protocol (COPS), where a proxy server, called the
aggregation and distribution layer (ADL), is introduced
between the users and the cloud. The ADL deployed inside
an organization has two main functionalities: aggregating
user queries and distributing search results. Under the ADL,
the computation cost incurred on the cloud can be largely
reduced, since the cloud only needs to execute a combined
query once, no matter how many users are executing queries.
Furthermore, the communication cost incurred on the cloud
will also be reduced, since files shared by the users need to
be returned only once. Most importantly, by using a series of
secure functions, COPS can protect user privacy from the
ADL, the cloud, and other users.

. Q. Liu is with the School of Information Science and Engineering, Central
South University, Changsha, Hunan Province, 410083, China, and also
with the College of Information Science and Engineering, Hunan University,
Changsha, Hunan Province, 410082, China. E-mail: gracelq628@hnu.edu.cn.

. C.C. Tan and J. Wu are with the Department of Computer and
Information Sciences, Temple University, Philadelphia, PA 19122 USA.
E-mail: {cctan, jiewu}@temple.edu.

. G. Wang is with the School of Information Science and Engineering,
Central South University, Changsha, Hunan Province, 410083, China.
E-mail: csgjwang@mail.csu.edu.cn.

Manuscript received 18 Jan. 2013; revised 22 Mar. 2013; accepted 3 May
2013. Date of publication 12 May 2013; date of current version 16 May 2014.
Recommended for acceptance by A. Nayak.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org. and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.132

U.S. Government work not protected by U.S. copyright.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141648

In this paper, we introduce a novel concept, differential
query services, to COPS, where the users are allowed to
personally decide how many matched files will be returned.
This is motivated by the fact that under certain cases, there
are a lot of files matching a user’s query, but the user is
interested in only a certain percentage of matched files. To
illustrate, let us assume that Alice wants to retrieve 2 percent
of the files that contain keywords ‘‘A, B’’, and Bob wants to
retrieve 20 percent of the files that contain keywords ‘‘A, C’’.
The cloud holds 1,000 files, where fF1; . . . ; F500g and
fF501; . . . ; F1000g are described by keywords ‘‘A, B’’ and ‘‘A,
C’’, respectively. In the Ostrovsky scheme, the cloud will
have to return 2,000 files. In the COPS scheme, the cloud will
have to return 1,000 files. In our scheme, the cloud only
needs to return 200 files. Therefore, by allowing the users to
retrieve matched files on demand, the bandwidth consumed
in the cloud can be largely reduced.

Motivated by this goal, we propose a scheme, termed
Efficient Information retrieval for Ranked Query (EIRQ), in
which each user can choose the rank of his query to
determine the percentage of matched files to be returned.
The basic idea of EIRQ is to construct a privacy-preserving
mask matrix that allows the cloud to filter out a certain
percentage of matched files before returning to the ADL.
This is not a trivial work, since the cloud needs to correctly
filter out files according to the rank of queries without
knowing anything about user privacy. Focusing on differ-
ent design goals, we provide two extensions: the first
extension emphasizes simplicity by requiring the least
amount of modifications from the Ostrovsky scheme, and
the second extension emphasizes privacy by leaking the
least amount of information to the cloud.

Our key contributions are as follows:
1. We propose three EIRQ schemes based on the ADL

to provide a cost-efficient solution for private
searching in cloud computing.

2. The EIRQ schemes can protect user privacy while
providing a differential query service that allows
each user to retrieve matched files on demand.

3. We provide two solutions to adjust related para-
meters; one is based on the Ostrovsky scheme, and
the other is based on Bloom filters.

4. Extensive experiments were performed using a
combination of simulations and real cloud deploy-
ments to validate our schemes.

The remainder of this paper is organized as follows. We
introduce related work in Section 2 before presenting
preliminaries in Section 3. We describe EIRQ schemes in
Section 4 and adjust the parameters in Section 5. After
analyzing the performance and security of the proposed
schemes in Section 6, we conduct evaluations in Section 7.
Finally, we conclude this paper in Section 8.

2 RELATED WORK

Our work aims to provide differential query services while
protecting user privacy from the cloud. Existing research
that is similar to ours can be found in the areas of private
searching [3], [4], [5], [6], [7], [8], [9], [10], [11].

Unlike searchable encryption [2], [12], where the user
conducts searches on encrypted data, private searching

performs keyword-based searches on unencrypted data.
Private searching was first proposed in [3], [4], which
allows a server to filter streaming data without compro-
mising user privacy. Their solution requires the server to
return a buffer of size Oðf logðfÞÞ when f files match a
user’s query. Each file is associated with a survival rate,
which denotes the probability of this file being successfully
recovered by the user. Based on the Paillier cryptosystem
[13], the files that mismatch a query will not survive in the
buffer, but the matched files enjoy a high survival rate.

Among various extensions, [5], [6] further reduced the
communication cost from Oðf logðfÞÞ to OðfÞ by solving a
set of linear equations to recover f matched files. However,
their scheme requires the decryption of one more buffer,
thus the computation cost is higher than the Ostrovsky
scheme. Reference [8] presented an efficient decoding
mechanism which allows the recovery of files that collide
in a buffer position. Reference [9] proposed a recursive
extraction mechanism, which requires a buffer of size OðfÞ
when f files match a user’s query. Reference [10] proposed
two new communication-optimal constructions; one uses
Reed-Solomon codes and allows for a zero-error, and the
other is based on irregular LDPC codes and allows for
lower computation cost at the server. The above private
searching schemes only support searching for OR of
keywords or AND of two sets of keywords. Reference [11]
extended the types of queries to support disjunctive
normal forms (DNF) of keywords. The main drawback
of existing private searching schemes is that both the
computation and communication costs grow linearly
with the number of users executing queries. Thus, when
applying these schemes to a large-scale cloud environ-
ment, querying costs will be extensive.

Our previous work [7] was the first to make private
searching techniques applicable to a cloud environment.
However, [7] requires the cloud to return all of the matched
files, which may cause a waste of bandwidth when only a
small percentage of files are of interest. To alleviate the
problem, we introduced the concept of differential query
services in [14]. The main difference between this work and
[14] is that we provide two extensions to address different
aspects of the problem, and we conduct extensive experi-
ments on a real cloud to verify the effectiveness of the
proposed schemes.

3 BACKGROUND

3.1 System Model
The system mainly consists of three entities:1 the aggregation
and distribution layer (ADL), many users, and the cloud, as
shown in Fig. 1. For ease of explanation, we only use a single
ADL in this paper, but multiple ADLs can be deployed as
necessary. An ADL is deployed in an organization that
authorizes its staff to share data in the cloud. The staff
members, as the authorized users, send their queries to the
ADL, which will aggregate user queries and send a combined

1. The users inside an organization share data in the cloud. Thus,
we assume that a management server maintained by the organization
is in charge of managing the authorized users and related keys.
Limited by the space, we do not detail this entity here.

LIU ET AL.: TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS 1649

query to the cloud. Then, the cloud processes the combined
query on the file collection and returns a buffer that contains
all of matched files to the ADL, which will distribute the
search results to each user. To aggregate sufficient queries,
the organization may require the ADL to wait for a period of
time before running our schemes, which may incur a certain
querying delay. In the supplementary file which is available
in the Computer Society Digital Library at http://doi.ieeecom-
putersociety.org/10.1109/132, we will discuss the computation
and communication costs as well as the querying delay incurred
on the ADL.

To further reduce the communication cost, a differential
query service is provided by allowing each user to retrieve
matched files on demand. Specifically, a user selects a
particular rank for his query to determine the percentage of
matched files to be returned. This feature is useful when
there are a lot of files that match a user’s query, but the user
only needs a small subset of them.

3.2 Security Model and Design Goals
The ADL is deployed inside the security boundary of an
organization, and thus it is assumed to be trusted by all of
the users. In the supplementary file available online, we
will discuss how the EIRQ schemes work without such an
assumption. The communication channels are assumed to
be secured under existing security protocols, such as SSL,
during information transfer. With these assumptions, as
long as the ADL obeys our schemes, a user cannot know
anything about other users’ interests, and thus the cloud is
the only attacker in our security model. As in existing work
[15], [16], the cloud is assumed to be honest but curious. That
is, it will obey our schemes, but still wants to know some
additional information about user privacy.

Reference [2] classified user privacy into search privacy
and access privacy. In our work, user queries are classified
into multiple ranks, and thus a new kind of user privacy,
rank privacy, also needs to be protected against the cloud.
Rank privacy entails hiding the rank of each user query
from the cloud, i.e., the cloud provides differential query
services without knowing which level of service is chosen
by the user. Rank privacy can be classified into basic level
and high level, where basic level will hide the rank of each
query from the cloud, and the high level will further hide
the number of ranks from the cloud. Our design goal can be
subdivided as follows:

. Cost efficiency. The users can retrieve matched files
on demand to further reduce the communication
costs incurred on the cloud.

. User privacy. The cloud cannot know anything
about the user’s search privacy, access privacy, and
at least the basic level of rank privacy.

3.3 Overview of the Ostrovsky Scheme
We briefly introduce the Ostrovsky scheme [3], [4], which
relies on a public key cryptosystem, the Paillier cryptosystem
[13]. Let EpkðmÞ denote the encryption of plaintext m under
public key pk. The Paillier cryptosystem has the following
homomorphic properties:

. EpkðaÞ � EpkðbÞ ¼ Epkðaþ bÞ

. EpkðaÞb ¼ Epkða � bÞ.

The Paillier cryptosystem allows the performance of
certain operations, such as multiplication and exponentiation,
on ciphertext directly. Given the resultant ciphertext, the
user can obtain the corresponding plaintext that processes
addition and multiplication operations.

The Ostrovsky scheme consists of three algorithms, the
working process of which is shown in Fig. 2a. Two
assumptions are used in their scheme: first, a dictionary
that consists of the universal keywords is assumed to be
publicly available; second, the users are assumed to have
the ability to estimate the number of files that match their
queries. To better illustrate its working process, we provide
an example in the supplementary file available online.

Step 1. The user runs the GenerateQuery algorithm to
send an encrypted query to the cloud. The
query is a bit string encrypted under the user’s
public key, where each bit is an encryption of
1, if the keyword in the dictionary is chosen;
otherwise, it is an encryption of 0.

Step 2. The cloud runs the PrivateSearch algorithm to
return an encrypted buffer to the user. Gener-
ally speaking, the cloud processes the encrypted
query on every file in the collection to generate
an encrypted c-e pair, and maps it to multiple
entries of an encrypted buffer. For file Fj, the
corresponding c-e pair, denoted as ðcj; ejÞ, is
generated as follows: the bits in query Q
corresponding to keywords in Fj are multiplied

Fig. 2. Working process. (a) Ostrovsky scheme. (b) EIRQ-Efficient
scheme.

Fig. 1. System model.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141650

together to form cj ¼
Q

Dic½i�2Fj Q½i�, where
Dic½i� denotes the i-th keyword in the dictio-
nary, and file content jFjj is powered to cj to
form ej ¼ cjFjjj .
Then, the cloud constructs a buffer of size �. Let
B denote the buffer, where the i-th entry,
denoted as B½i�, consists of two parts, denoted
as B½i; 1� and B½i; 2�, both of which are initialized
with an encryption of 0 under the user’s public
key. To map ðcj; ejÞ to the buffer, the cloud
randomly chooses an entry, say p�, and multi-
plies ðcj; ejÞ to this entry by performing
B½p�; 1� ¼ B½p�; 1� � cj and B½p�; 2� ¼ B½p�; 2� � ej.
The mapping operation will be performed �
times. After mapping all pairs to the buffer,
each buffer entry has one of the three statuses:
survival, collision, and mismatch. If only one
matched file is mapped, the entry state is sur-
vival; if more than one matched file is mapped,
the entry state is collision; if no matched files are
mapped, the entry state is mismatch.

Step 3. The user runs the FileRecover algorithm to
recover files. The user decrypts the buffer,
entry by entry, to obtain the plaintext c-e pairs.
For the entries in the survival state, file content
can be recovered by dividing the plaintext e
value by the plaintext c value.

The security of the Ostrovsky scheme derives from the
semantic security of the Paillier cryptosystem. The key
technique of their scheme is that the files mismatching a
user’s query are processed to encrypted 0s, which have no
impact on the matched files, even if they are mapped in
the same entry. Thus, the buffer size only depends on the
number of matched files, which is much smaller than the
number of files stored in the cloud.

4 SCHEME DESCRIPTION

In this section, we will describe the original EIQR scheme
and its two extensions. To distinguish the three EIRQ
schemes, we name the original EIRQ scheme as EIRQ-
Efficient, the first extension as EIRQ-Simple, and the
second extension as EIRQ-Privacy, in this paper.

The basic idea of EIQR-Efficient is to construct a
privacy-preserving mask matrix with which the cloud can
filter out a certain percentage of matched files before
mapping them to a buffer. As proven in the Ostrovsky
scheme, the file survival rate is determined by the buffer
size � and mapping times �. Therefore, the basic idea of two
extensions is that, for each rank i 2 f0; . . . ; rg, the ADL
adjusts the buffer size �i and the mapping times �i to make
the file survival rate qi approach 1� i=r. To better illustrate
the working process of the EIRQ schemes, we provide
examples in the supplementary file available online.

4.1 The EIRQ-Efficient Scheme
Before illustrating EIQR-Efficient, two fundamental pro-
blems should be resolved:

Firstly, we should determine the relationship between
query rank and the percentage of matched files to be

returned. Suppose that queries are classified into 0 � r
ranks. Rank-0 queries have the highest rank and Rank-r
queries have the lowest rank. In this paper, we simply
determine this relationship by allowing Rank-i queries to
retrieve ð1� i=rÞ percent of matched files. Therefore,
Rank-0 queries can retrieve 100 percent of matched files,
and Rank-r queries cannot retrieve any files.

Secondly, we should determine which matched files will
be returned and which will not. In this paper, we simply
determine the probability of a file being returned by the
highest rank of queries matching this file. Specifically, we
first rank each keyword by the highest rank of queries
choosing it, and then rank each file by the highest rank of
its keywords. If the file rank is i, then the probability of
being filtered out is i=r. Therefore, Rank-0 files will be
mapped into a buffer with probability 1, and Rank-r files
will not be mapped at all. Since unneeded files have been
filtered out before mapping, the mapped files should
survive in the buffer with probability 1. In Section 5, we
will illustrate how to adjust the buffer size and mapping
times to achieve this goal.

EIRQ-Efficient mainly consists of four algorithms, with
its working process being shown in Fig. 2b. Since
algorithms QueryGen and ResultDivide are easily under-
stood, we only provide the details of algorithms Matrix-
Construct and FileFilter in Alg. 1.

Algorithm 1 The EIRQ-Efficient scheme.

MatrixConstruct (run by the ADL with public key pk)
for i ¼ 1 to d do

set l to be the highest rank of queries choosing Dic½i�
for j ¼ 1 to r do

if j � r� l then

M½i; j� ¼ Epkð1Þ
else

M½i; j� ¼ Epkð0Þ
adjust � and � so that file survival rate is 1

FileFilter (run by the cloud)

for each file Fj stored in the cloud do

for i ¼ 1 to d do

k ¼ j mod r; cj ¼
Q

Dic½i�2Fj M½i; k�; ej ¼ c
jFjj
j

map ðcj; ejÞ � times to a buffer of size �

Step 1. The user runs the QueryGen algorithm to send
keywords and the rank of the query to the
ADL. Since the ADL is assumed to be a trusted
third party, this query will be sent without
encryption.

Step 2. After aggregating enough user queries, the
ADL runs the MatrixConstruct algorithm to
send a mask matrix to the cloud. The mask
matrix M is a d-row and r-column matrix,
where d is the number of keywords in the
dictionary, and r is the lowest query rank. Let
M½i; j� denote the element in the i-th row and
the j-th column, and let l be the highest rank of
queries that choose the i-th keyword Dic½i� in
the dictionary. M is constructed as follows: for
the i-th row of M that corresponds to Dic½i�,

LIU ET AL.: TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS 1651

M½i; 1�; . . . ;M½i; r� l� are set to 1, and M½i; r�
lþ 1�; . . . ;M½i; r� are set to 0, then each element
is encrypted under the ADL’s public key pk.
For the rows that correspond to Rank-l
keywords, the ADL sets the first r� l elements,
rather than random r� l elements, to 1. The
reason is to ensure that, given any Rank-l
file Fj, when we choose a random number k,
the probability of all of the k-th elements of
the rows that correspond Fj’s keywords being
0 is l=r, which is determined by the highest
rank of Fj’s keywords.

Step 3. The cloud runs the FileFilter algorithm to
return a buffer that contains a certain percent-
age of matched files to the ADL. Specifically,
the cloud multiplies the k-th elements of the
rows that correspond to Fj’s keywords togeth-
er to form cj, where k ¼ j mod r. Then, it
powers jFjj to cj to obtain ej, and maps the c-e
pair into multiple entries of a buffer, as in the
Ostrovsky scheme. Note that, with Step 2, we
can make sure that, for a Rank-l file Fj, the
probability of cj being 0 is l=r, and thus the
probability of Fj being filtered out is l=r.

Step 4. The ADL runs the ResultDivide algorithm to
distribute search results to each user. File
contents are recovered as the FileRecover
algorithm in the Ostrovsky scheme. To allow
the ADL to distribute files correctly, we
require the cloud to attach keywords to the
file content. Thus, the ADL can find out all of
the files that match users’ queries by executing
keyword searches.

4.2 The EIRQ-Simple Scheme
The working process of EIRQ-Simple is similar to Fig. 2b.
The main differences lie in the MatrixConstruct and
FileFilter algorithms (see Alg. 2). Intuitively, given queries
that are classified into 0 � r ranks, ADL sends r combined
queries, denoted as Q0; . . . ; Qr�1, to the cloud, each with a
different rank. Specifically, for Qi, the ADL sets the j-th bit
to an encryption of 1 if the j-th keyword Dic½j� in the
dictionary is chosen by at least one Rank-i query. The cloud
then will generate r buffers, denoted as B0; . . . ;Br�1, each
with a different file survival rate. Specifically, for Bi, the
ADL adjusts the mapping time �i and the buffer size �i so
that the survival rate of files in Bi is qi ¼ 1� i=r, where
0 � i � r� 1.

Algorithm 2 The EIRQ-Simple scheme.

MatrixConstruct (run by the ADL with public key pk)

for i ¼ 0 to r� 1 do

for j ¼ 1 to d do

if Dic½j� is in Rank-i queries then

Qi½j� ¼ Epkð1Þ
else

Qi½j� ¼ Epkð0Þ
adjust �i and �i so that survival rate of Rank-i files is
qi ¼ 1� i=r

FileFilter (run by the cloud)

for i ¼ 0 to r� 1 do

for each file F in the cloud do

for j ¼ 1 to d do

c ¼
Q

Dic½j�2F Qi½j�; e ¼ cjF j
map ðc; eÞ �i times to Bi of size �i

The main drawback of EIRQ-simple is that it returns
redundant files when there are files satisfying more than
one ranked query. For example, if Fi is of interest by Rank-0
and Rank-1 queries, it will be returned twice (in Rank-0
buffer and Rank-1 buffer, respectively), which wastes the
network bandwidth. Therefore, the best case scenario is
when there are no files of interest to different ranked
queries, and the worst case scenario is when queries of
different ranks query the same files.

4.3 The EIRQ-Privacy Scheme
The working process of EIRQ-Privacy is similar to Fig. 2b.
The main differences lie in the MatrixConstruct and
FileFilter algorithms (see Alg. 3). Intuitively, EIRQ-Privacy
adopts one buffer, with different mapping times for files of
different ranks. Let �i denote the mapping times for a Rank-i
query, and let l be the highest rank of queries that choose
the i-th keyword Dic½i� in the dictionary. The mask matrix
M is a d-row and m-column matrix, where d is the number
of keywords in the dictionary, and m ¼ max �i. The
MatrixConstruct algorithm constructs M in the following
way: for the i-th row of M that corresponds to Dic½i�, the
ADL sets M½i; 1�; . . . ;M½i; �l� to 1, and M½i; �l þ 1�; . . . ;
M½i;m� to 0, and then encrypts each element under its
public key. Note that for a row that corresponds to a Rank-l
keyword, the ADL sets the first�l elements, rather than
random �l elements, to 1. The reason is to ensure that, given
any Rank-l file, when we multiply the rows that correspond
to file keywords together in a element-by-element way, the
resulting row contains �l elements whose values are larger
than 0.

Algorithm 3 The EIRQ-Privacy scheme.

MatrixConstruct (run by the ADL with public key pk)

for i ¼ 0 to r� 1 do

adjust �i and � so that survival rate of Rank-i files is
qi ¼ 1� i=r

for i ¼ 1 to d do

set l to be the highest rank of queries choosing Dic½i�
for j ¼ 1 to max �i do

if j � �l then

M½i; j� ¼ Epkð1Þ
else

M½i; j� ¼ Epkð0Þ
FileFilter(run by the cloud)

for each file Fj in the cloud do

for k ¼ 1 to max �i do

for i ¼ 1 to d do

cj;k ¼
Q

Dic½i�2Fj M½i; k�; ej;k ¼ c
jFjj
j;k

map ðcj;k; ej;kÞ once to a buffer of size �

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141652

In the FileFilter algorithm, for each file Fj, the cloud
multiplies the rows that correspond to file keywords,
element by element, to form a resulting row. Each element
in the resulting row corresponds to a c value. Let
cj;1; . . . ; cj;m denote Fj’s c values, where m ¼ max �i. The
cloud powers the file content jFjj to cj;k to form ej;k, and
maps ðcj;k; ej;kÞ to the buffer once, where 1 � k � m. Note
that with the MatrixConstruct algorithm, we can make sure
that, for a Rank-l file, the number of c values larger than 0 is
�l. Therefore, although m c-e pairs will be mapped, only �l
of them will take effect, which is equal to mapping c-e pairs
�l times to a buffer.

5 PARAMETER SETTING

5.1 Ostrovsky Parameter Setting
The Ostrovsky scheme has proven that, given f files that
match a query, when each file is randomly mapped � times
into a buffer of 2 � f � � entries, the file failure rate will be
lower than f=2� , i.e., the file survival rate will be higher than
1� f=2� . Therefore, given a threshold failure rate p090, if
we map each file logðf=p0Þ times2 into a buffer of size
2 � f � logðf=p0Þ, then the real failure rate p is smaller than p0,
and the real file survival rate q will be higher than 1� p0.
Furthermore, we know that, given the estimated number of
the matched files, two factors have an impact on file
survival rate: the buffer size and the mapping times.

Suppose that queries are classified into 0 � r ranks,
where f 0i files match Rank-i query but mismatch higher
ranked queries, and fi files match Rank-i query. The
Ostrovsky parameter setting is as follows: the ADL
determines a threshold value � 9 0, and then adjusts
parameters with Eq. (1), (2), and (3). EIRQ-Efficiency filters
out a certain percentage of matched files before mapping
them into the buffer, and thus all remaining files should be
returned. EIRQ-Efficiency adopts one buffer, where the file
survival rate is 100 percent. EIRQ-Simple returns multiple
buffers with different file survival rates, one for each rank.
EIRQ-Privacy still adopts one buffer, but with different
mapping times for files of different ranks. Therefore, EIRQ-
Efficient will use Eq. (1), EIRQ-Simple will use Eq. (2), and
EIRQ-Privacy will use Eq. (3) to adjust the parameters
under the Ostrovsky parameter setting

� ¼ log

Pr
i¼0 f

0
i � 1� i

r

� �
�

� �

� ¼ 2 � � �
Xr
i¼0

f 0i � 1� i
r

� �
(1)

�i ¼ log
fi

i
rþ �
� �

 !
; �i ¼ 2 � �i � fi (2)

�i ¼ log
f 0i

i
rþ �
� �

 !
; � ¼

Xr
i¼0

2 � �i � f 0i : (3)

5.2 Bloom Filter Parameter Setting
An alternative solution is to use Bloom filters [17], [18] to
adjust the parameters in our schemes. Bloom filter is a
technique that is used to represent a subset S of n members
from a universe U . A Bloom filter consists of an array of m

bits, all of which are initially set to 0. It uses k independent
random hash functions h1; . . . ; hk, with range 0; . . . ; m� 1,
to map each member in U to random k bits. For each
member s 2 U , the bits hiðsÞ are set to 1 if s 2 S; otherwise,
they are set to 0, for 1 � i � k. A location can be set to 1
multiple times, but only the first change has an effect. To
check if a member s is in S, we check whether all hiðsÞ are
set to 1. If not, then clearly s is not a member of S.
Otherwise, there is still a certain probability (false positive)
that s is not in S, since k bits may be set to 1 by other
members.

The false positive is calculated as follows [17]: after all
members of S are hashed, the probability for a specific bit to
be 0 is ð1� 1=mÞkn � eð�kn=mÞ. A false positive occurs when
each of k locations of one non-member are set to 1, which is
ð1�ð1�1=mÞknÞk�ð1�eð�kn=mÞÞk. Let g ¼ k � lnð1� eð�kn=mÞÞ.
Minimizing the false positive is equivalent to minimizing k,
which in turn is equivalent to minimizing g. When
k ¼ ln 2 � ðm=nÞ, we have dg=dk ¼ 0. In this case, the false
positive is minimized to ð0:6185Þm=n. That is to say, given the
number of members n and the threshold false positive p00,
we can make the real false positive approximatep00 when each
member is hashed log0:6185ðp00Þ � ln 2 times to a Bloom filter of
log0:6185ðp00Þ � n bits. Recall that the file failure rate in EIRQ
schemes denotes the probability of a missing file, i.e., the
probability that all mappings of each file collide. In a sense,
the failure rate is equivalent to the false probability in
Bloom filters. Therefore, we let the number of members n,
the threshold false positive p00, and the number of bits m in
Bloom filters represent the number of files that match the
query f , threshold failure rate p0, and buffer size � in EIRQ
schemes, respectively.

The Bloom filter parameter setting is as follows: the ADL
determines a threshold value � 9 0, and then adjusts
parameters with Eqs. (4), (5), and (6). Here, EIRQ-Efficient
will use Eq. (4), EIRQ-Simple will use Eq. (5), and EIRQ-
Privacy will use Eq. (6) to adjust the parameters under the
Bloom filter parameter setting

�¼ log0:6185ð�Þ�ln 2; �¼
Xr
i¼0

�

ln 2
�f 0i � 1� i

r

� �� �
(4)

�i¼ log0:6185

i

r
þ �

� �
�ln 2; �i¼

�i
ln 2
�fi (5)

�i¼ log0:6185

i

r
þ �

� �
�ln 2; �¼

Xr
i¼0

�i
ln 2
�f 0i

� �
: (6)

Note that, in Eqs. (1) and (4), p0 ¼ �, and thus, all of the
files that are mapped into the buffer will survive with a rate
higher than 1� �; in Eqs. (2), (3), (5), (6) p0i ¼ i=rþ �, and
thus the files that match Rank-i queries will survive in the
buffer with a rate higher than 1� i=r� �.

6 ANALYSIS

6.1 Security Analysis
We will show that EIRQ schemes can provide search
privacy, access privacy, and rank privacy as follows.

6.1.1 Search Privacy
In the three schemes, the combined query sent to the cloud
is encrypted under the ADL’s public key with the Paillier2. log is the abbreviation of log2.

LIU ET AL.: TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS 1653

cryptosystem. The query is a matrix of encrypted 0s and 1s.
The Paillier cryptosystem is semantically secure, and the
ciphertext of every 1 or 0 is different from other 1s or 0s.
Therefore, the cloud cannot deduce what each user is
searching for from the encrypted query.

6.1.2 Access Privacy
In the three schemes, the cloud processes the encrypted
query on each file in a collection, and maps the processing
result into a buffer, which is encrypted with the ADL’s
public key. The cloud conducts this process for all files in
the same way. Therefore, the cloud cannot know which
files are actually returned from the encrypted buffer.

6.1.3 Rank Privacy
In EIRQ-Simple, the messages from the ADL to the cloud
are r encrypted queries, the buffer size, and the mapping
times, where r is the information, which we leak more than
[3]. Given r, the cloud only knows the number of query
ranks without knowing how many users are in each rank,
nor which users are in which ranks. Therefore, EIRQ-
Simple can protect the basic level of rank privacy for a user.
In EIRQ-Privacy, the message from the ADL to the cloud is
a d-row and m-column mask matrix, where d is the number
of keywords in the dictionary, and m ¼ max �i is the
maximal value of mapping times. Here, no extra informa-
tion is leaked more than [3]. Therefore, EIRQ-Privacy
provides a high level of user rank privacy. In EIRQ-Efficient,
the message from the ADL to the cloud is a d-row and r-
column mask matrix, where d is the number of keywords in
the dictionary, and r is the lowest rank of user queries.
Here, r is the information that we leak more than [3].
Therefore, EIRQ-Efficient can protect the basic level of rank
privacy for a user.

6.2 Performance Analysis
We compare the performance between No Rank and the
three EIRQ schemes under different parameter settings (see
Table 1). In No Rank, the ADL only combines user queries,
but does not provide differential query services. In the
supplementary file available online, we also provide a
comparison of performance between No Rank and the
work in [3], [6]. Suppose that queries are classified into
0 � r ranks, t files stored in the cloud whose keywords
constitute a dictionary of size d, fi files matching Rank-i
queries, and f 0i files matching Rank-i queries but mis-
matching higher ranked queries. Furthermore, in No Rank

and EIRQ-Efficient, the threshold file survival rate p0 is set
to �; in EIRQ-Simple and EIRQ-Privacy, p0i is set to i=rþ �.

6.2.1 Computational Cost
We only consider the cost of the exponential operation,
which is the most expensive. In both parameter settings,
the results are the same. In EIRQ-Simple, the computational
cost is r times more than No Rank since, for each ranked
query, the cloud needs to process it on the file collection
once. In EIRQ-Privacy, the computational cost is maxð�iÞ
times more than No Rank since, for each file, the cloud
needs to execute maxð�iÞ exponentiations with the matrix
elements. In EIRQ-Efficient, the computational cost is
much the same as in No Rank, since the cloud needs to
execute exponentiation once for each file.

6.2.2 Communication Cost
Under the Ostrovsky parameter setting, for EIRQ-Simple,
the ADL sends r queries, each of which is of size OðdÞ, to
the cloud, which will return r buffers to the ADL, each of
which is of size Oðfi � logðfi=ði=rþ �ÞÞÞ; for EIRQ-Privacy,
the ADL sends a mask matrix of size Oðmax �i � dÞ to
the cloud, which will return a buffer of size Oð

Pr
i¼0ðf 0i �

logðf 0i=ði=rþ �ÞÞÞÞ to the ADL; for EIRQ-Efficient, the ADL
sends a mask matrix of size Oðr � dÞ to the cloud, which
will return a buffer of size Oð

Pr
i¼0ðf 0i � ð1� i=rÞÞ �

logð
Pr

i¼0
f 0i �ð1�i=rÞ
� ÞÞ to the ADL. Under the Bloom filter

parameter setting, the query sizes are the same as those
under the Ostrovsky parameter setting. The buffer
sizes returned from the cloud in EIRQ-Simple, EIRQ-
Privacy, and EIRQ-Efficient are Oð

Pr
i¼0ðfi � log0:6185ði=rþ

�ÞÞÞ, Oð
Pr

i¼0ðf 0i � log0:6185ði=rþ�ÞÞÞ, and Oð
Pr

i¼0ðf 0i � ð1�i=rÞÞ�
log0:0:6185

ð�ÞÞ, respectively.

7 EVALUATION

In this section, we will compare three EIRQ schemes from
the following aspects: file survival rate and computation/
communication cost incurred on the cloud. Then, based on
the simulation results, we deploy our program in Amazon
Elastic Compute Cloud (EC2) to test the transfer-in and
transfer-out time incurred on the cloud when executing
private searches. Note that the energy-performance trade-
off is crucial to the success of cloud computing, and
existing energy-saving techniques are hard to directly
extend to a cloud environment [19], [20]. As part of our
future extensions, we will evaluate the consumed energy

TABLE 1
No Rank vs. Three EIRQ Schemes

.2Oðlog0:6185ðxÞÞ ¼ OðlogðxÞÞ, as log0:6185ðxÞ ¼
logðxÞ

logð0:6185Þ, where 1= logð0:6185Þ is a constant. We keep log0:6185ðxÞ in the complexity analysis for the ease
of comparison.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141654

overhead in the cloud to verify the effectiveness of our
schemes. We use No Rank to denote unranked queries
under the ADL. The summary of the experiment para-
meters are shown in Table 2.

7.1 File Survival Rate
Since queries are classified into 0 � 4 ranks, queries in
Rank-0, Rank-1, Rank-2, Rank-3, and Rank-4 should
retrieve 100 percent, 75 percent, 50 percent, 25 percent,
0 percent of matched files, respectively. However, in Fig. 3,
the real failure rate in EIRQ-Simple and EIRQ-Privacy
under the Ostrovsky parameter setting is much lower than
i=r, and thus, the real file survival rate is higher than the
desired value of 1� i=r (about 25 percent and 50 percent of
files are redundantly returned to users); Only EIRQ-
Efficient, which filters a certain percentage of matched
files before mapping them to a buffer, provides differential
query services.

Under the Bloom filter parameter setting, we first obtain
corresponding mapping times. Specifically, for file survival
rate 100 percent, 75 percent, 50 percent, 25 percent, we have
the optimal mapping times 7, 2, 1, 0.4, respectively. Based
on these values, the buffer size can be calculated with
Eqs. (4), (5), and (6) for different schemes. In practice, � and �
must be integers. Thus, we use b�c and b�c to replace the
corresponding values. Using these parameters, the file
survival rates for different ranks are shown in Fig. 4, where
three EIRQ schemes can provide differential query ser-
vices, and no bandwidth is wasted in each EIRQ scheme.
Therefore, in terms of file survival rate, the Bloom filter
parameter setting can achieve better performance than the
Ostrovsky parameter setting.

7.2 Computational Cost
As described in Section 6.2, the computational cost is
mainly determined by the number of exponentiations

performed by the cloud, which is almost the same under
the Bloom filter and the Ostrovsky parameter settings. In
order to justify the analyses, we will compare the
computational cost between No Rank and three EIRQ
schemes.

The comparisons of computational cost on the cloud are
shown in Fig. 5, where the number of queries in each rank
ranges from 1 to 25. In Fig. 5a, under the Bloom filter
parameter setting, the computational cost is approximately
14.807s in No Rank, 59. 274s in EIRQ-Simple, 101.075s in
EIRQ-Privacy, and 14.861s in EIRQ-Efficient. In Fig. 5b,
under the Ostrovsky parameter setting, the computational
cost approximately ranges from 14.8270s to 14.8788s in No
Rank, from 59.1671s to 59.3838s in EIRQ-Simple, from 114.
0475s to 176.5107s in EIRQ-Privacy, and from 14.8664s to
14.9269s in EIRQ-Efficient. In both settings, EIRQ-Privacy
consumes the most computation cost, and EIRQ-Efficient,
like No Rank, consumes the least computation cost.

7.3 Communication Cost
As described in Section 6.2, the communication cost mainly
depends on the buffer size generated by the cloud, which is
calculated in different ways under different parameter
settings. Furthermore, the buffer size depends on the
number of files that match the queries, which is different
when users have different common interests, i.e., the average
number of common keywords among user queries. There-
fore, in different parameter settings, we will analyze the
buffer size under different common interests. In the
following experiments, 1 common keyword, 2 common
keywords, and 4 common keywords denote that the
average common keywords among user queries are 1, 2,

TABLE 2
Parameters

Fig. 3. File survival rate under Ostrovsky setting.

Fig. 4. File survival rate under Bloom filter setting.

Fig. 5. Comparison of computational cost at the cloud. The x-axis
denotes the number of queries in each rank, and the y-axis denotes the
computation time (s). (a) Bloom filter parameter setting. (b) Ostrovsky
parameter setting.

LIU ET AL.: TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS 1655

and 4, respectively; random keywords denote that each
user randomly chooses keywords for its query.

From Figs. 6 and 7, we know that the EIRQ schemes
perform better under the Bloom filter setting compared to
under the Ostrovsky setting. Under the Bloom filter setting,
all of the EIRQ schemes consume less communication costs
than No Rank, e.g., EIRQ-Efficient, EIRQ-Privacy, and
EIRQ-Simple can further reduce communication costs by
about 50 percent, 35 percent, and 30 percent compared to
No Rank, respectively, when the queries share 4 common
keywords. Under the Ostrovsky setting, EIRQ-Simple
always consumes more bandwidth than No Rank, and
EIRQ-Privacy only performs better than No Rank under
certain conditions. In both settings, the EIRQ schemes
consume less bandwidth as the common interests among
users increase. For example, when there are 25 users in
each rank under the Bloom filter setting, EIRQ-Efficient
only generates a 1 MB buffer under 4 common keywords,
but 3 MB under 1 common keyword.

Notice that in both settings, EIRQ-Efficient always has
the best performance, the next is EIRQ-Privacy, and the last
is EIRQ-Simple. Furthermore, EIRQ-Efficient works better
than No Rank when only a few users are conducting
searches. For example, when there are 5 queries with
4 common keywords, EIRQ-Efficient generates a buffer of
size 274 KB, but No Rank generates a buffer of size 467 KB,
under the Bloom filter setting; EIRQ-Efficient generates a
buffer of size 439 KB, but No Rank generates a buffer of size
834 KB under the Ostrovsky setting. When there are
5 queries in each rank with 1 common keyword, EIRQ-
Efficient generates a buffer of size 687 KB, but No Rank
generates a buffer of size 1513 KB, under the Bloom filter
setting; EIRQ-Efficient generates a buffer of size 1309 KB,
but No Rank generates a buffer of size 3194 KB, under
Ostrovsky setting.

7.4 Transfer Time in a Real Cloud
To verify the feasibility of our schemes, we deploy our
program in Amazon EC2, to test the transfer-in (receiving
query) and transfer-out (sending buffer) time at the cloud.
The local machine has an Intel Core 2 Duo E8400 3.0 GHz
CPU and 8 GB Linux RAM. We subscribe EC2 amzn-ami-
2011.02.1.i386-ebs (ami-8c1fece5) AMI and a small type
instance with the following specifications: 32-bit platform,
a single virtual core equivalent to 1 compute unit CPU, and
1.7 GB RAM. The average bandwidth from EC2 to the local
machine is 33.43 MB/s, and from the local machine to EC2
is 42.98 MB/s.

First, we test the transfer-in time in the real cloud, which
is mainly incurred by receiving queries from the ADL.
Under both parameter settings, the query size for No Rank,
EIRQ-Simple, EIRQ-Privacy, and EIRQ-Efficient can be
calculated with OðdÞ, Oðr � dÞ, Oðmax �i � dÞ, and Oðr � dÞ,
respectively. Given d ¼ 100, r ¼ 4, and jwj ¼ 1 KB, the
query size for No Rank, EIRQ-Simple, and EIRQ-Efficient is
about 100 KB, 400 KB, and 400 KB, respectively. For EIRQ-
Privacy, the mapping times are calculated in different ways
under different parameter settings. Under the Bloom filter
parameter setting, the mapping times are 7, 4, 1, 1,
respectively, and thus the query size is about 700 KB.
However, under the Ostrovsky parameter setting, the
mapping times depend on the number of matched files,
which in turn depends on the common interests among
queries. The comparisons of transfer-in time are shown in
Fig. 8.

Then, we test the transfer-out time at the cloud, which is
mainly incurred by returning files to the ADL. The results are
shown in Figs. 9 and 10. In all cases, EIRQ-Efficient consumes
the least amount of transfer time, and EIRQ-Simple works
better than No-Rank under the Bloom filter setting. For
example, under the Ostrovsky scheme, No-Rank consumes

Fig. 6. Comparison of communication cost under the Bloom filter setting. The x-axis denotes the number of queries in each rank, and the y-axis
denotes the buffer size (KB). (a) 4 common keywords; (b) 2 common keywords; (c) 1 common keyword; (d) random keywords.

Fig. 7. Comparison of communication cost under the Ostrovsky setting. The x-axis denotes the number of queries in each rank, and the y-axis
denotes the buffer size (KB). (a) 4 common keywords; (b) 2 common keywords; (c) 1 common keyword; (d) random keywords.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141656

from 83.6s to 1191.8s, EIRQ-simple consumes from 189.8s to
1597.6s, EIRQ-Privacy consumes from 83.3s to 1099.9s, and
EIRQ-Efficient consumes from 57.4s to 475.1s when there are
4 common keywords; No-Rank consumes from 191.1s to
3857.5s, EIRQ-simple consumes from 181.5s to 5369.7s, EIRQ-
Privacy consumes from 161.8s to 3323.4s, and EIRQ-Efficient
consumes from 81.3s to 1502.7s when there is 1 common
keyword.

Therefore, EIRQ-Efficient is most suitable to be de-
ployed to a cloud environment. For example, the time to
transfer a query from the ADL to the cloud consumes less
than 100 seconds, and the time to transfer the buffer from
the cloud to the ADL consumes less than 500 seconds,
under 4 common keywords.

8 CONCLUSION

In this paper, we proposed three EIRQ schemes based on
an ADL to provide differential query services while
protecting user privacy. By using our schemes, a user can
retrieve different percentages of matched files by specify-
ing queries of different ranks. By further reducing the
communication cost incurred on the cloud, the EIRQ
schemes make the private searching technique more
applicable to a cost-efficient cloud environment. However,
in the EIRQ schemes, we simply determine the rank of each
file by the highest rank of queries it matches. For our future
work, we will try to design a flexible ranking mechanism
for the EIRQ schemes.

ACKNOWLEDGMENT

This research was supported in part by NSF grants ECCS
1231461, ECCS 1128209, CNS 1138963, CNS 1065444, and
CCF 1028167; NSFC grants 61272151 and 61073037, ISTCP
grant 2013DFB10070, the China Hunan Provincial Science

& Technology Program under Grant Number 2012GK4106,
and the ‘‘Mobile Health’’ Ministry of Education-China
Mobile Joint Laboratory (MOE-DST No. [2012]311); and
Fundamental Research Funds for the Central Universities.

REFERENCES

[1] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud Computing
(Draft),’’ in NIST Special Publication. Gaithersburg, MD, USA:
National Institute of Standards and Technology, 2011.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable
Symmetric Encryption: Improved Definitions and Efficient
Constructions,’’ in Proc. ACM CCS, 2006, pp. 79-88.

[3] R. Ostrovsky and W. Skeith, ‘‘Private Searching on Streaming
Data,’’ in Proc. CRYPTO, 2005, pp. 233-240.

[4] R. Ostrovsky and W. Skeith, ‘‘Private Searching on Streaming
Data,’’ J. Cryptol., vol. 20, no. 4, pp. 397-430, Oct. 2007.

[5] J. Bethencourt, D. Song, and B. Waters, ‘‘New Constructions and
Practical Applications for Private Stream Searching,’’ in Proc.
IEEE SP, 2006, pp. 1-6.

[6] J. Bethencourt, D. Song, and B. Waters, ‘‘New Techniques for
Private Stream Searching,’’ ACM Trans. Inf. Syst. Security, vol. 12,
no. 3, p. 16, Jan. 2009.

[7] Q. Liu, C. Tan, J. Wu, and G. Wang, ‘‘Cooperative Private
Searching in Clouds,’’ J. Parallel Distrib. Comput., vol. 72, no. 8,
pp. 1019-1031, Aug. 2012.

[8] G. Danezis and C. Diaz, ‘‘Improving the Decoding Efficiency of
Private Search,’’ Int’l Assoc. Cryptol. Res., IACR Eprint Archive
No. 024, Schloss Dagstuhl, Germany, 2006.

[9] G. Danezis and C. Diaz, ‘‘Space-Efficient Private Search with
Applications to Rateless Codes,’’ in Proc. Financial Cryptogr. Data
Security, 2007, pp. 148-162.

[10] M. Finiasz and K. Ramchandran, ‘‘Private Stream Search at the
Same Communication Cost as a Regular Search: Role of LDPC
Codes,’’ in Proc. IEEE ISIT, 2012, pp. 2556-2560.

[11] X. Yi and E. Bertino, ‘‘Private Searching for Single and
Conjunctive Keywords on Streaming Data,’’ in Proc. ACM
Workshop Privacy Electron. Soc., 2011, pp. 153-158.

[12] B. Hore, E.-C. Chang, M.H. Diallo, and S. Mehrotra, ‘‘Indexing
Encrypted Documents for Supporting Efficient Keyword
Search,’’ in Proc. Secure Data Manage., 2012, pp. 93-110.

[13] P. Paillier, ‘‘Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes,’’ in Proc. EUROCRYPT, 1999,
pp. 223-238.

[14] Q. Liu, C.C. Tan, J. Wu, and G. Wang, ‘‘Efficient Information
Retrieval for Ranked Queries in Cost-Effective Cloud Envir-
onments,’’ in Proc. IEEE INFOCOM, 2012, pp. 2581-2585.

[15] S. Yu, C. Wang, K. Ren, and W. Lou, ‘‘Achieving Secure, Scalable,
Fine-Grained Data Access Control in Cloud Computing,’’ in Proc.
IEEE INFOCOM, 2010, pp. 1-9.

[16] G. Wang, Q. Liu, J. Wu, and M. Guo, ‘‘Hierarchical Attribute-
Based Encryption and Scalable User Revocation for Sharing Data
in Cloud Servers,’’ Comput. Security, vol. 30, no. 5, pp. 320-331,
July 2011.

[17] M. Mitzenmacher, ‘‘Compressed Bloom Filters,’’ IEEE/ACM
Trans. Netw., vol. 10, no. 5, pp. 604-612, Oct. 2002.

[18] D. Guo, J. Wu, H. Chen, and X. Luo, ‘‘Theory and Network
Applications of Dynamic Bloom Filters,’’ in Proc. IEEE
INFOCOM, 2006, pp. 1-12.

Fig. 8. Comparison of transfer-in time. (a) Comparision under Bloom
filter setting; (b) EIRQ-privacy under Ostrovsky setting.

Fig. 9. Transfer-out time in real cloud under the Bloom filter setting. The
x-axis denotes the number of users, and the y-axis denotes transferring
time (s). (a) 4 common keywords; (b) 1 common keyword.

Fig. 10. Transfer-out time in real cloud under the Ostrovsky setting. The
x-axis denotes the number of users, and the y-axis denotes the
transferring time (s). (a) 4 common keywords; (b) 1 common keyword.

LIU ET AL.: TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS 1657

[19] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer,
M.Q. Dang, and K. Pentikousis, ‘‘Energy-Efficient Cloud
Computing,’’ Comput. J., vol. 53, no. 7, pp. 1045-1051, Sept. 2010.

[20] E. Gelenbe, R. Lent, and M. Douratsos, ‘‘Choosing a Local or
Remote Cloud,’’ in Proc. NCCA, 2012, pp. 25-30.

Qin Liu received the BSc degree in computer
science fromHunanNormal University, Changsha,
China, in 2004, and the MSc and PhD degrees in
computer science both from Central South Uni-
versity, Changsha, China, in 2007 and 2012,
respectively. She has been a Visiting Student at
Temple University, Philadelphia, PA, USA. Her
research interests include security and privacy
issues in cloud computing. She is a Assistant
Professor in College of Information Science and
Engineering at Hunan University, Changsha,

Hunan, China.

Chiu C. Tan received the PhD in computer
science from the College of William and Mary,
Williamsburg, VA, USA, in 2010. He is a
Research Assistant Professor in the Computer
and Information Sciences Department at Temple
University, Philadelphia, PA, USA. His research
interests include wireless security (802.11,
vehicular, RFID), cloud computing security, and
security for mobile health (mHealth) systems. He
is a member of IEEE.

Jie Wu is the Chair and a Laura H. Carnell
Professor in the Department of Computer and
Information Sciences at Temple University,
Philadelphia, PA, USA. Prior to joining Temple
University, he was a Program Director at the
National Science Foundation and a Distin-
guished Professor at Florida Atlantic University.
His current research interests include mobile
computing and wireless networks, routing proto-
cols, cloud and green computing, network trust
and security, and social network applications.

Dr. Wu regularly published in scholarly journals, conference pro-
ceedings, and books. He serves on several editorial boards, including
IEEE Transactions on Computers, IEEE Transactions on Service
Computing, and Journal of Parallel and Distributed Computing. Dr. Wu
was a general chair for IEEE IPDPS 2008 and IEEE ICDCS 2013 and
program co-chair/chair for IEEE INFOCOM 2011 and CCF CNCC
2013. Currently, he is serving as general chair for ACM MobiHoc
2014. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee
on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished
Speaker and a Fellow of the IEEE. He is the recipient of the 2011
China Computer Federation (CCF) Overseas Outstanding Achieve-
ment Award.

Guojun Wang received the BSc degree in
geophysics, in 1992, the MSc degree in com-
puter science, in 1996, and the PhD degree in
computer science, in 2002, all from Central
South University, Changsha, China. He is now
Chair and Professor of the Department of
Computer Science at Central South University.
He is also the Director of Trusted Computing
Institute of the University. He has been an
Adjunct Professor at Temple University, USA, a
Visiting Scholar at Florida Atlantic University,

USA, a Visiting Researcher at the University of Aizu, Japan, and a
Research Fellow at the Hong Kong Polytechnic University. His
research interests include network and information security, Internet
of things, and cloud computing. He is a Senior Member of CCF and a
member of IEEE, ACM, and IEICE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 6, JUNE 20141658

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

