
Expressive, Efficient, and Revocable Data
Access Control for Multi-Authority

Cloud Storage
Kan Yang, Student Member, IEEE, and Xiaohua Jia, Fellow, IEEE

Abstract—Data access control is an effective way to ensure the data security in the cloud. Due to data outsourcing and untrusted
cloud servers, the data access control becomes a challenging issue in cloud storage systems. Ciphertext-Policy Attribute-based
Encryption (CP-ABE) is regarded as one of the most suitable technologies for data access control in cloud storage, because it gives
data owners more direct control on access policies. However, it is difficult to directly apply existing CP-ABE schemes to data
access control for cloud storage systems because of the attribute revocation problem. In this paper, we design an expressive,
efficient and revocable data access control scheme for multi-authority cloud storage systems, where there are multiple authorities
co-exist and each authority is able to issue attributes independently. Specifically, we propose a revocable multi-authority CP-ABE
scheme, and apply it as the underlying techniques to design the data access control scheme. Our attribute revocation method
can efficiently achieve both forward security and backward security. The analysis and simulation results show that our proposed data
access control scheme is secure in the random oracle model and is more efficient than previous works.

Index Terms—Access control, multi-authority, CP-ABE, attribute revocation, cloud storage

Ç

1 INTRODUCTION

CLOUD storage is an important service of cloud computing
[1], which offers services for data owners to host their

data in the cloud. This new paradigm of data hosting and
data access services introduces a great challenge to data
access control. Because the cloud server cannot be fully
trusted by data owners, they can no longer rely on servers to
do access control. Ciphertext-Policy Attribute-based Encryp-
tion (CP-ABE) [2], [3] is regarded as one of the most suitable
technologies for data access control in cloud storage systems,
because it gives the data owner more direct control on access
policies. In CP-ABE scheme, there is an authority that is
responsible for attribute management and key distribution.
The authority can be the registration office in a university,
the human resource department in a company, etc. The data
owner defines the access policies and encrypts data accord-
ing to the policies. Each user will be issued a secret key
reflecting its attributes. A user can decrypt the data only
when its attributes satisfy the access policies.

There are two types of CP-ABE systems: single-author-
ity CP-ABE [2], [3], [4], [5] where all attributes are managed
by a single authority, and multi-authority CP-ABE [6], [7],
[8] where attributes are from different domains and man-
aged by different authorities. Multi-authority CP-ABE is
more appropriate for data access control of cloud storage

systems, as users may hold attributes issued by multiple
authorities and data owners may also share the data using
access policy defined over attributes from different au-
thorities. For example, in an E-health system, data owners
may share the data using the access policy ‘‘Doctor AND
Researcher’’, where the attribute ‘‘Doctor’’ is issued by a
medical organization and the attribute ‘‘Researcher’’ is
issued by the administrators of a clinical trial. However, it
is difficult to directly apply these multi-authority CP-ABE
schemes to multi-authority cloud storage systems because
of the attribute revocation problem.

In multi-authority cloud storage systems, users’ attri-
butes can be changed dynamically. A user may be entitled
some new attributes or revoked some current attributes.
And his permission of data access should be changed
accordingly. However, existing attribute revocation meth-
ods [9], [10], [11], [12] either rely on a trusted server or lack
of efficiency, they are not suitable for dealing with the
attribute revocation problem in data access control in
multi-authority cloud storage systems.

In this paper, we first propose a revocable multi-
authority CP-ABE scheme, where an efficient and secure
revocation method is proposed to solve the attribute
revocation problem in the system. As described in Table 1,
our attribute revocation method is efficient in the sense that
it incurs less communication cost and computation cost,
and is secure in the sense that it can achieve both backward
security (The revoked user cannot decrypt any new
ciphertext that requires the revoked attribute to decrypt)
and forward security (The newly joined user can also decrypt
the previously published ciphertexts1, if it has sufficient

. The authors are with the Department of Computer Science, City
University of Hong Kong, Kowloon, Hong Kong. E-mail: kan.yang@my.
cityu.edu.hk; csjia@cityu.edu.hk.

Manuscript received 30 May 2013; revised 17 Aug. 2013; accepted 22 Sept.
2013. Date of publication 3 Oct. 2013; date of current version 13 June 2014.
Recommended for acceptance by K. Wu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.253

1. The previous ciphertexts may be associated with the attribute in a
previous version, while the newly joined user may be issued an
attribute in a new version.

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 7, JULY 2014 1735

attributes). Our scheme does not require the server to be
fully trusted, because the key update is enforced by each
attribute authority not the server. Even if the server is not
semi-trusted in some scenarios, our scheme can still
guarantee the backward security. Then, we apply our
proposed revocable multi-authority CP-ABE scheme as the
underlying techniques to construct the expressive and
secure data access control scheme for multi-authority cloud
storage systems.

Compared to the conference version [14] of this work,
we have the following improvements:

1. We modify the framework of the scheme and make
it more practical to cloud storage systems, in which
data owners are not involved in the key generation.
Specifically, a user’s secret key is not related to the
owner’s key, such that each user only needs to hold
one secret key from each authority instead of
multiple secret keys associated to multiple owners.

2. We greatly improve the efficiency of the attribute
revocation method. Specifically, in our new attribute
revocation method, only the ciphertexts that associat-
ed with the revoked attribute needs to be updated,
while in [14], all the ciphertexts that associated with
any attribute from the authority (corresponding to the
revoked attribute) should be updated. Moreover, in
our new attribute revocation method, both the key
and the ciphertext can be updated by using the same
update key, instead of requiring the owner to generate
an update information for each ciphertext, such that
owners are not required to store each random number
generated during the encryption.

3. We also highly improve the expressiveness of our
access control scheme, where we remove the
limitation that each attribute can only appear at
most once in a ciphertext.

The remaining of this paper is organized as follows. We
give the definition of the system model, framework and the
security model in Section 2. Section 3 gives the detailed
construction of our data access control scheme for multi-
authority cloud storage systems. Sections 4 and 5 give the
security analysis and performance analysis respectively.
Section 6 gives the related work on ABE and attribute revoca-
tion methods. The conclusion is given in Section 7. In the
supplemental file which is available in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.
1109/253, we give some preliminary definitions and describe
the full security proof of our data access control scheme.

2 SYSTEM MODEL AND SECURITY MODEL

2.1 System Model
We consider a data access control system in multi-authority
cloud storage, as described in Fig. 1. There are five types of
entities in the system: a certificate authority (CA), attribute
authorities (AAs), data owners (owners), the cloud server
(server) and data consumers (users).

The CA is a global trusted certificate authority in the
system. It sets up the system and accepts the registration of
all the users and AAs in the system. For each legal user in
the system, the CA assigns a global unique user identity to
it and also generates a global public key for this user.
However, the CA is not involved in any attribute manage-
ment and the creation of secret keys that are associated
with attributes. For example, the CA can be the Social
Security Administration, an independent agency of the
United States government. Each user will be issued a Social
Security Number (SSN) as its global identity.

Every AA is an independent attribute authority that is
responsible for entitling and revoking user’s attributes
according to their role or identity in its domain. In our
scheme, every attribute is associated with a single AA, but
each AA can manage an arbitrary number of attributes.
Every AA has full control over the structure and semantics
of its attributes. Each AA is responsible for generating a
public attribute key for each attribute it manages and a
secret key for each user reflecting his/her attributes.

TABLE 1
Comprehensive Comparison of Attribute Revocation Methods for CP-ABE Systems

Fig. 1. System model of data access control in multi-authority cloud
storage.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 7, JULY 20141736

Each user has a global identity in the system. A user may
be entitled a set of attributes which may come from
multiple attribute authorities. The user will receive a secret
key associated with its attributes entitled by the
corresponding attribute authorities.

Each owner first divides the data into several compo-
nents according to the logic granularities and encrypts each
data component with different content keys by using
symmetric encryption techniques. Then, the owner defines
the access policies over attributes from multiple attribute
authorities and encrypts the content keys under the
policies. Then, the owner sends the encrypted data to the
cloud server together with the ciphertexts.2 They do not
rely on the server to do data access control. But, the access
control happens inside the cryptography. That is only when the
user’s attributes satisfy the access policy defined in the
ciphertext, the user is able to decrypt the ciphertext. Thus,
users with different attributes can decrypt different
number of content keys and thus obtain different granula-
rities of information from the same data.

2.2 Framework
The framework of our data access control scheme is defined
as follows.

Definition 1 (Framework of Multi-Authority Access

Control Scheme). The framework of data access control
scheme for multi-authority cloud storage systems contains
the following phases:

Phase 1: System Initialization. This phase consists of CA
setup and AA setup with the following algorithms:

. CASetupð1�Þ ! ðGMK; GPP ; ðGPKuid ; GPK0uidÞ ;
ðGSKuid;GSK0uidÞ; CertificateðuidÞgÞ. The CA setup
algorithm is run by the CA. It takes no input other
than the implicit security parameter �. It generates
the global master key GMK of the system and the
global public parameters GPP. For each user uid, it
generates the user’s global public keys ðGPKuid;
GPK0uidÞ, the user’s global secret keys ðGSKuid;
GSK0uidÞ and a certificate CertificateðuidÞ of the user.

. AASetupðUaidÞ! ðSKaid;PKaid;fVKxaid ;PKxaidgxaid2UaidÞ.
The attribute authority setup algorithm is run by
each attribute authority. It takes the attribute
universe Uaid managed by the AAaid as input. It
outputs a secret and public key pair ðSKaid;PKaidÞ of
the AAaid and a set of version keys and public
attribute keys fVKxaid ; PKxaidgxaid2Uaid for all the
attributes managed by the AAaid.

Phase 2: Secret Key Generation by AAs.

. SKeyGenðGPP ; GPKuid ; GPK0uid ; GSKuid ; SKaid;
Suid;aid; fVKxaid ;PKxaidgxaid2Suid;aidÞ ! SKuid;aid. The se-
cret key generation algorithm is run by each AA. It
takes as inputs the global public parameters GPP, the
global public keys ðGPKuid;GPK0uidÞ and one global
secret key GSKuid of the user uid, the secret key SKaid

of the AAaid, a set of attributes Suid;aid that describes
the user uid from the AAaid and its corresponding
version keys fVKxaidg and public attribute keys
fPKxaidg. It outputs a secret key SKuid;aid for the user
uid which is used for decryption.

Phase 3: Data Encryption by Owners. Owners first encrypt
the data m with content keys by using symmetric encryption
methods, then they encrypt the content keys by running the
following encryption algorithm:

. EncryptðGPP; fPKaidkgaidk2IA ; �;AÞ ! CT. The en-
cryption algorithm is run by the data owner to
encrypt the content keys. It takes as inputs the
global public parameters GPP, a set of public keys
fPKaidkgaidk2IA for all the AAs in the encryption set
IA

3, the content key � and an access policy A.4 The
algorithm encrypts � according to the access policy
and outputs a ciphertext CT. We will assume that the
ciphertext implicitly contains the access policy A.

Phase 4: Data Decryption by Users. Users first run the
decryption algorithm to get the content keys, and use them
to further decrypt the data.

. Decrypt ðCT;GPKuid;GSK0uid; fSKuid;aidkgaidk2IAÞ!�.
The decryption algorithm is run by users to decrypt
the ciphertext. It takes as inputs the ciphertext CT
which contains an access policy A, a global public
key GPKuid and a global secret key GSK0uid of the
user uid, and a set of secret keys fSKuid;aidkgaidk2IA
from all the involved AAs. If the attributes
fSuid;aidkgaidk2IA of the user uid satisfy the access
policy A, the algorithm will decrypt the ciphertext
and return the content key �.

Phase 5: Attribute Revocation. This phase contains three
steps: Update Key Generation by AAs, Secret Key Update
by Non-revoked Users5 and Ciphertext Update by Server.

. UKeyGenðSKaid0 ; ~xaid0 ; VK~xaid0 Þ ! ðfVK~xaid0 ; UKs;~xaid0 ;
UKc;~xaid0 Þ. The update key generation algorithm is
run by the corresponding AAaid0 that manages the
revoked attribute ~xaid0 . It takes as inputs the secret
key SKaid0 of AAaid0 , the revoked attribute ~xaid0 and
its current version key VK~xaid0 . It outputs a new
version key fVK~xaid0 and the update key UKs;~xaid0 (for
secret key update) and the update key UKc;~xaid0 (for
ciphertext update).

. SKUpdateðSKuid;aid0 ;UKs;~xaid0 Þ ! fSKuid;aid0 . The secret
key update algorithm is run by each non-revoked user
uid. It takes as inputs the current secret key of the non-
revoked user SKuid;aid0 and the update key UKs;~xaid0 . It

2. In this paper, we simply use the ciphertext to denote the
encrypted content keys with CP-ABE.

3. Note that not all the AAs are involved in the encryption. We use
encryption set IA to denote the set of those AAs involved in the
encryption.

4. The access policy is a LSSS structure ðM;�Þ, which is defined in
the supplemental file available online.

5. We denote those users who possess the revoked attributes ~xaid0
but have not be revoked as the non-revoked users.

YANG AND JIA: EXPRESSIVE, EFFICIENT, AND REVOCABLE DATA ACCESS CONTROL 1737

outputs a new secret key fSKuid;aid0 for each non-
revoked user uid.

. CTUpdateðCT;UKc;~xaid0 Þ ! fCT. The ciphertext up-
date algorithm is run by the cloud server. It takes as
inputs the ciphertexts which contain the revoked
attribute ~xaid0 , and the update key UKc;~xaid0 . It outputs
new ciphertexts fCT which contain the latest version
of the revoked attribute ~xaid0 .

2.3 Security Model
In multi-authority cloud storage systems, we make the
following assumptions:

. The CA is fully trusted in the system. It will not
collude with any user, but it should be prevented
from decrypting any ciphertexts by itself.

. Each AA is trusted but can be corrupted by the
adversary.

. The server is curious but honest. It is curious about
the content of the encrypted data or the received
message, but will execute correctly the task assigned
by each attribute authority.

. Each user is dishonest and may collude to obtain
unauthorized access to data.

2.3.1 Decisional q-Parallel Bilinear Diffie-Hellman
Exponent Assumption

We recall the definition of the decisional q-parallel Bilinear
Diffie-Hellman Exponent (q-parallel BDHE) problem in [3]
as follows. Chooses a group G of prime order p according to
the security parameter. Let a; b1; . . . ; bq; s 2 Zp be chosen at
random and g be a generator of G. If an adversary is given

~y¼ g; gs; ga; . . . ; gða
qÞ; ; gða

qþ2Þ; . . . ; gða
2qÞ

�
81�j�q g

s�bj ; ga=bj ; . . . ; gða
q=bjÞ; ; gða

qþ2=bjÞ; . . . ; gða
2q=bjÞ

81�j;l�q;l6¼j g
a�s�bl=bj ; . . . ; gða

q �s�bl=bjÞ
�
;

it must be hard to distinguish a valid tuple eðg; gÞa
qþ1s 2 GT

from a random element R in GT .
An algorithm B that outputs z 2 f0; 1g has advantage � in

solving q-parallel BDHE in G if

Pr Bð~y; T ¼eðg; gÞa
qþ1sÞ¼0

h i
�Pr Bð~y; T ¼RÞ¼0½ �

��� �����:
Definition 2. The decisional q-parallel BDHE assumption holds

if no polynomial time algorithm has a non-negligible advantage
in solving the q-parallel BDHE problem.

2.3.2 Security Model
We now describe the security model for our revocable
multi-authority CP-ABE systems by the following game
between a challenger and an adversary. Similar to the
identity-based encryption schemes [15], the security model
allows the adversary to query for any secret keys and
update keys that cannot be used to decrypt the challenge
ciphertext. We assume that the adversaries can corrupt
authorities only statically similar to [6], [7], [8], but key

queries are made adaptively. Let SA denote the set of all the
attribute authorities. The security game is defined as follows.

Setup. The global public parameters are generated by
running the CA setup algorithm. The adversary specifies a
set of corrupted attribute authorities S0A � SA. The chal-
lenger generates the public keys by running the attribute
authority setup algorithm and generates the secret keys by
running the secret key generation algorithm. For uncor-
rupted attribute authorities in SA � S0A, the challenger only
sends the public keys to the adversary. For corrupted
authorities in S0A, the challenger sends both the public keys
and secret keys to the adversary. The adversary can also get
the global public parameters.

Phase 1. The adversary makes secret key queries by
submitting pairs ðuid; SuidÞ to the challenger, where
Suid ¼ fSuid;aidkgaidk2SA�S0A is a set of attributes belonging to
several uncorrupted AAs, and uid is a user identifier. The
challenger gives the corresponding set of secret keys
fSKuid;aidkg to the adversary. The adversary also makes
update key queries by submitting a set of attributes S0aid. The
challenger gives the corresponding update keys to the
adversary.

Challenge. The adversary submits two equal length
messages m0 and m1. In addition, the adversary gives a
challenge access structure ðM�; ��Þ which must satisfy the
following constraints: Let V denote the subset of rows of
M� labeled by attributes controlled by corrupted AAs. For
each uid, let Vuid denote the subset of rows of M� labeled by
attributes x belongs to the attribute sets that the adversary
has queried. For each uid, we require that the subspace
spanned by V [Vuid must not include ð1; 0; . . . ; 0Þ. In other
words, the adversary cannot ask for a set of keys that allow
decryption, in combination with any keys that can obtained
from corrupted AAs. The challenger then flips a random
coin c, and encrypts mc under the access structure ðM�; ��Þ.
Then, the ciphertext CT� is given to the adversary.

Phase 2. The adversary may query more secret keys and
update keys, as long as they do not violate the constraints
on the challenge access structure ðM�; ��Þ and the following
constraints: None of the updated secret keys (generated by
the queried update keys and the queried secret keys6) is
able to decrypt the challenged ciphertexts. In other words,
the adversary is not able to query the update keys that can
update the queried secret keys to the new secret keys that
can decrypt the challenge ciphertext.

Guess. The adversary outputs a guess c0 of c.
The advantage of an adversary A in this game is defined

as Pr½c0 ¼ c� � 1
2.

Definition 3. A revocable multi-authority CP-ABE scheme is
secure against static corruption of authorities if all polynomial
time adversaries have at most a negligible advantage in the
above security game.

6. There is another reason that makes the queried secret keys cannot
decrypt the challenge ciphertext. That is at least one of the attributes in
the previous queried secret keys may be not in the current version.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 7, JULY 20141738

3 OUR DATA ACCESS CONTROL SCHEME

In this section, we first give an overview of the challenges
and techniques. Then, we propose the detailed construc-
tion of our access control scheme which consists of five
phases: System Initialization, Key Generation, Data En-
cryption, Data Decryption and Attribute Revocation.

3.1 Overview
To design the data access control scheme for multi-
authority cloud storage systems, the main challenging
issue is to construct the underlying Revocable Multi-
authority CP-ABE protocol. In [6], Chase proposed a
multi-authority CP-ABE protocol, however, it cannot be
directly applied as the underlying techniques because of
two main reasons: 1) Security Issue: Chase’s multi-authority
CP-ABE protocol allows the central authority to decrypt all
the ciphertexts, since it holds the master key of the system;
2) Revocation Issue: Chase’s protocol does not support
attribute revocation.

We propose a new revocable multi-authority CP-ABE
protocol based on the single-authority CP-ABE proposed
by Lewko and Waters in [16]. That is we extend it to multi-
authority scenario and make it revocable. We apply the
techniques in Chase’s multi-authority CP-ABE protocol [6]
to tie together the secret keys generated by different
authorities for the same user and prevent the collusion
attack. Specifically, we separate the functionality of the
authority into a global certificate authority (CA) and
multiple attribute authorities (AAs). The CA sets up the
system and accepts the registration of users and AAs in the
system.7 It assigns a global user identity uid to each user
and a global authority identity aid to each attribute au-
thority in the system. Because the uid is globally unique in
the system, secret keys issued by differentAAs for the same
uid can be tied together for decryption. Also, because each
AA is associated with an aid, every attribute is distinguish-
able even though some AAs may issue the same attribute.

To deal with the security issue in [6], instead of using the
system unique public key (generated by the unique master
key) to encrypt data, our scheme requires all attribute
authorities to generate their own public keys and uses them
to encrypt data together with the global public parameters.
This prevent the certificate authority in our scheme from
decrypting the ciphertexts.

To solve the attribute revocation problem, we assign a
version number for each attribute. When an attribute
revocation happens, only those components associated
with the revoked attribute in secret keys and ciphertexts
need to be updated. When an attribute of a user is revoked
from its correspondingAA, theAA generates a new version
key for this revoked attribute and generates an update key.
With the update key, all the users, except the revoked user,
who hold the revoked attributes can update its secret key
(Backward Security). By using the update key, the
components associated with the revoked attribute in the
ciphertext can also be updated to the current version. To
improve the efficiency, we delegate the workload of

ciphertext update to the server by using the proxy re-
encryption method, such that the newly joined user is also
able to decrypt the previously published data, which are
encrypted with the previous public keys, if they have
sufficient attributes (Forward Security). Moreover, by
updating the ciphertexts, all the users need to hold only
the latest secret key, rather than to keep records on all the
previous secret keys.

3.2 System Initialization
The system initialization contains CA Setup and AA Setup.

3.2.1 CA Setup
The CA sets up the system by running the CA setup
algorithm CASetup, which takes a security parameter as
input. The CA first chooses two multiplicative groups G
and GT with the same prime order p and a bilinear map
e : G	G! GT . I t a l so choose a hash funct ion
H : f0; 1g� ! G that matches the string to an element in
G, such that the security will be modeled in the random
oracle. Then, the CA chooses two random numbers
a; b 2 Zp as the global master key GMK ¼ ða; bÞ of the
system and computes the global public parameters as

GPP ¼ ðg; ga; gb; HÞ:

The CA accepts both User Registration and AA Registration.
1) User Registration: Every user should register to the CA

during the system initialization. If the user is a legal user in
the system, the CA then assigns a globally unique user
identity uid to this user. For each user uid, the CA first
generates two random numbers uuid; u

0
uid 2 Zp as its global

secret keys

GSKuid ¼ uuid;GSK0uid ¼ u0uid:

It then generates the user’s global public keys as

GPKuid ¼ guuid ;GPK0uid ¼ gu
0
uid :

The CA also generates a certificate CertificateðuidÞ for the
user uid. Then, the CA sends one of the user’s global public
keys GPKuid, one global secret key GSK0uid and the
Certificate CertificateðuidÞ to the user uid.

2) AA Registration: Each AA should also register itself to
the CA during the system initialization. If the AA is a legal
authority in the system, the CA first assigns a global
attribute authority identity aid to this AA. Then, the CA
sends the other global public/secret key of each user
ðGPK0uid;GSKuidÞ to the AAaid. It also sends a verification
key to the AAaid, which can be used to verify the certificates
of users issued by the CA.

3.2.2 AA Setup
Let Said denote the set of all attributes managed by each
attribute authority AAaid. It chooses three random numbers
�aid; �aid; �aid 2 Zp as the authority secret key

SKaid ¼ ð�aid; �aid; �aidÞ;

where �aid is used for data encryption, �aid is used to
distinguish attributes from different AAs and �aid is used

7. Note that the CA is not involved in any attribute management
and any secret key generation.

YANG AND JIA: EXPRESSIVE, EFFICIENT, AND REVOCABLE DATA ACCESS CONTROL 1739

for attribute revocation. It also generates the public key
PKaid as

PKaid ¼ eðg; gÞ�aid ; g�aid ; g
1

�aid

� �
:

For each attribute xaid 2 Said, the AAaid generates a
public attribute key as

PKxaid ¼ PK1;xaid ¼ HðxaidÞ
vxaid ;PK2;xaid ¼ HðxaidÞ

vxaid �aid
��

by implicitly choosing an attribute version key as
VKxaid ¼ vxaid . All the public attribute keys fPKxaidgxaid2Said
are published on the public bulletin board of the AAaid,
together with the public key PKaid of the AAaid.

3.3 Secret Key Generation
Each user uid is required to authenticate itself to the AAaid

before it can be entitled some attributes from the AAaid. The
user submits its certificate CertificateðuidÞ to the AAaid.
The AAaid then authenticates the user by using the
verification key issued by the CA.

If it is a legal user, theAAaid entitles a set of attributesSuid;aid
to the user uid according to its role or identity in its
administration domain. Otherwise, it aborts. Then, the AAaid

generates the user’s secret key SKuid;aid by running the secret
key generation algorithm SKeyGen. It chooses a random
number tuid;aid 2 Zp and computes the user’s secret key as

SKuid;aid ¼
�
Kuid;aid ¼ g�aid gauuid gbtuid;aid ;K0uid;aid ¼ gtuid;aid ;

8xaid 2 Suid;aid : Kxaid;uid¼gu
0
uid
tuid;aid�aidHðxaidÞvxaid �aidðuuidþ�aidÞ

�
:

If the user uid does not hold any attribute from AAaid, the
secret key SKuid;aid only contains the first component
Kuid;aid.

3.4 Data Encryption
Before hosting datam to cloud servers, the owner processes
the data as follows.

1) It divides the data into several data components as
m ¼ fm1; . . . ;mng according to the logic granula-
rities. For example, the personal data may be
divided into {name, address, security number,
employer, salary}.

2) It encrypts data components with different con-
tent keys f�1; . . . ; �ng by using symmetric en-
cryption methods.

3) It then defines an access structure Mi for each
content key �iði ¼ 1; . . . ; nÞ and encrypts it by
running the encryption algorithm Encrypt.

The encryption algorithm Encrypt takes as inputs the
global public parameters GPP, a set of public keys
fPKaidkgaidk2IA for all the AAs in the encryption set IA, the
content key � and an access structure ðM; �Þ over all the
involved attributes. Let M be a ‘	 n matrix, where ‘
denotes the total number of all the attributes. The function
� maps each row of M to an attribute. In this construction,

we remove the limitation that � should be an injective
function (i.e., an attribute can associate with more than one
rows of M).

To encrypt the content key �, the encryption algorithm
first chooses a random encryption exponent s 2 Zp and
chooses a random vector ~v ¼ ðs; y2; . . . ; ynÞ 2 Zn

p , where
y2; . . . ; yn are used to share the encryption exponent s. For
i ¼ 1 to ‘, it computes �i ¼ ~v �Mi, where Mi is the vector
corresponding to the i-th row of M. Then, it randomly
chooses r1; r2; . . . ; r‘ 2 Zp and computes the ciphertext as

CT ¼

C ¼ � �

Y
aidk2IA

PKaidk

 !s

; C0 ¼ gs; C00 ¼ gbs; :

81 � i � ‘; �ðiÞ 2 Saidk :

Ci ¼ ga�i � PK1;�ðiÞ
� ��ri ; C0i ¼ gri ;

Di ¼ g
ri

�aidk ; D0i ¼ PK2;�ðiÞ
� �ri!:

After that, the owner sends the data to the server in the
format as described in Fig. 2.

3.5 Data Decryption
All the legal users in the system can freely query any
interested encrypted data. Upon receiving the data from
the server, the user runs the decryption algorithm Decrypt
to decrypt the ciphertext by using its secret keys from
different AAs. Only the attributes the user possesses satisfy
the access structure defined in the ciphertext CT, the user
can get the content key.

The decryption algorithm DecryptðCT;GPKuid;GSK0uid;
fSKuid;aidkgaidk2IAÞ ! � can be constructed as follows. It
takes as inputs the ciphertext CT which contains an access
policy ðM; �Þ, a global public key GPKuid and a global secret
key GSK0uid of the user uid, and a set of secret keys
fSKuid;aidkgaidk2IA from all the involved AAs. If the user’s
attributes can satisfy the access structure, then the user uid
proceeds as follows.

Let I be fIaidkgaidk2IA , where Iaidk � f1; 2; . . . ; ‘g is defined
as Iaidk ¼ fi : �ðiÞ 2 Saidkg. LetnA ¼ jIAj be the number ofAAs
involved in the ciphertext. Then, it chooses a set of constants
fwi 2 Zpgi2I and reconstructs the encryption exponent as
s ¼

P
i2I wi�i if f�ig are valid shares of the secret s according

to M. The decryption algorithm first computesY
aidk2IA

eðC0;Kuid;aidkÞe C00;K0uid;aidk

� ��1

¼ eðg; gÞauuidnAs �
Y

aidk2IA
eðg; gÞs�aid :

For each i 2 I, suppose �ðiÞ 2 Saidk , it computes

eðCi;GPKuidÞ e Di;K�ðiÞ;uid
� �

e C0i; K
0�GSK0uid
uid;aidk

� �
e g;D0i
� ��1

¼ eðg; gÞauuid�i :

Then, it computesY
aidk2IA

Y
i2Iaidk

eðg; gÞauuid�i
� �winA

¼ eðg; gÞauuidnAs:

Fig. 2. Format of data on cloud server.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 7, JULY 20141740

Thus, the user can obtain
Q

k2IA eðg; gÞ
�aidk s and use it to

decrypt the ciphertext as

� ¼ C=
Y

aidk2IA
eðg; gÞ�aidk s:

Then, the user can use the decrypted content key � to
further decrypt the encrypted data component.

3.6 Attribute Revocation
As we described before, there are two requirements of the
attribute revocation: 1) The revoked user (whose attribute
is revoked) cannot decrypt new ciphertexts encrypted with
new public attribute keys (Backward Security); 2) the
newly joined user who has sufficient attributes should also
be able to decrypt the previously published ciphertexts,
which are encrypted with previous public attribute keys
(Forward Security). For example, in a university, some
archive documents are encrypted under the policy ‘‘CS
Dept. AND (Professor OR PhD Student)’’, which means
that only the professors or PhD students in CS department
are able to decrypt these documents. When a new
professor/PhD student joins the CS department of the
university, he/she should also be able to decrypt these
documents. Our attribute revocation methods can achieve
both forward security and backward security.

Suppose an attribute ~xaid0 is revoked from the user uid0

by the AAaid0 . The attribute ~xaid0 is denoted as the Revoked
Attribute and the user uid0 is denoted as the Revoked User.
We also use the term of Non-revoked Users to denote the set
of users who possess the revoked attribute ~xaid0 but have
not been revoked. Our revocation methods contains the
following three steps:

3.6.1 Update Key Generation
When an attribute ~xaid0 is revoked from a user, the
corresponding authority AAaid0 runs the update key
generation algorithm UKeyGen to compute the update
keys. The algorithm takes as inputs the secret key SKaid0 of
AAaid0 , the revoked attribute ~xaid0 and its current version
key VK~xaid0 . It generates a new version key VK0 ~xaid0 ¼
v0~xaid0 ðv

0
~xaid0
6¼ v~xaid0 Þ for the revoked attribute ~xaid0 .

The AAaid0 then generates a unique update key UKs;~xaid0 ;uid
for secret key update by each non-revoked user uid as

UKs;~xaid0 ;uid ¼ Hð~xaid0 Þ
�aid0 ðv0~xaid0 �v~xaid0 Þðuuidþ�aid0 Þ

and generates the update keyUKc;~xaid0 for ciphertext update as

UKc;~xaid0 ¼ UK1;~xaid0 ¼
v0~xaid0
v~xaid0

;UK2;~xaid0 ¼
v~xaid0 � v0~xaid0
v~xaid0 �aid0

� �
:

The AAaid0 sends the UKs;~xaid0 ;uid to non-revoked user uid
and sends UKc;~xaid0 to the cloud server.

Then, the AAaid0 updates the public attribute key of the
revoked attribute ~xaid0 as

fPK~xaid0 ¼ PK~xaid0

� �UK1;~xaid0

and publishes it on its public bulletin board. Then, the
AAaid0 broadcasts a message for all the owners that the
public attribute key of the revoked attribute ~xaid0 is
updated.

3.6.2 Secret Key Update by Non-Revoked Users
Upon receiving the update key UKs;~xaid0 ;uid, the user uid then
update his/her secret key by running the new secret key
update algorithm SKUpdate as

fSKuid;aid0 ¼� ~Kuid;aid0 ¼ Kuid;aid0 ; ~K0uid;aid0 ¼ K0uid;aid0 ; :
~K ~xaid0 ;uid ¼ K~xaid0 ;uid � UKs;~xaid0 ;uid;

8xaid0 2 Suid;aid0 n f~xaid0 g : ~Kxaid0 ;uid ¼ Kxaid0 ;uid

�
:

Note that only the component associated with the revoked
attribute ~xaid0 in the secret key needs to be updated, while
other components are kept unchanged.

3.6.3 Ciphertext Update by Cloud Server
To ensure that the newly joined user who has sufficient
attributes can still decrypt those previous data which are
published before it joined the system (Forward Security),
all the ciphertexts associated with the revoked attribute are
required to be updated to the latest version. Intuitively, the
ciphertext update should be done by data owners, which
will incur a heavy overhead on the data owner. To improve
the efficiency, we move the workload of ciphertext update
from data owners to the cloud server, such that it can
eliminate the huge communication overhead between data
owners and cloud server, and the heavy computation cost
on data owners. The ciphertext update is conducted by using
proxy re-encryption method, which means that the server
does not need to decrypt the ciphertext before updating.

Upon receiving the update key UKc;~xaid0 from the
authority. The cloud server runs the ciphertext update
algorithm CTUpdate to update the ciphertext associated
with the revoked attribute ~xaid0 . It takes as inputs the
ciphertexts associated with the revoked attribute ~xaid0 and
the update key UKc;~xaid0 . It updates the ciphertext that are
associated with the revoked attribute ~xaid0 as

fCT ¼ ~C ¼ C; ~C0 ¼ C0; ~C00 ¼ C00;
�
81 � i � ‘ : ~C0i ¼ C0i; ~Di ¼ Di;

if �ðiÞ ¼ ~xaid0 : ~Ci ¼ Ci � D0i
� �UK2;~xaid0 ;

~D0i ¼ D0i
� �UK1;~x

aid0 ;

if �ðiÞ 6¼ ~xaid0 : ~Ci ¼ Ci; ~D0i ¼ D0i
�
: (3.1)

From the above equation Eq. (3.1), it is easy to find that
our scheme only requires to update those components
associated with the revoked attribute of the ciphertext,
while the other components which are not related to the
revoked attribute are not changed. In this way, our scheme
can greatly improve the efficiency of attribute revocation.

The ciphertext update not only can guarantee the
backward security of the attribute revocation, but also
can reduce the storage overhead on users (i.e., all the users
need to hold only the latest secret key, rather than to keep
records on all the previous secret keys). The cloud server in
our system is required to be semi-trusted. Even if the cloud
server is not semi-trusted in some scenarios, the server will
not update the ciphertexts correctly. In this situation, the
forward security cannot be guaranteed, but our system can
still achieve the backward security.

YANG AND JIA: EXPRESSIVE, EFFICIENT, AND REVOCABLE DATA ACCESS CONTROL 1741

4 SECURITY ANALYSIS

We prove that our data access control is secure under the
security model we defined, which can be summarized as in
the following theorems.

Theorem 1. When the decisional q-parallel BDHE assumption
holds, no polynomial time adversary can selectively break our
system with a challenge matrix of size l� 	 n�, where n� � q.

Proof. The proof is given in the supplemental file available
online. g

Theorem 2. Our scheme can achieve both Forward Security and
Backward Security.

Proof. Actually, the Forward Security and Backward Security
are two basic requirements of attribute revocation. Now
we prove that our scheme can achieve this two require-
ments as follows.

Backward Security: During the secret key update phase,
the corresponding AA generates an update key for each
non-revoked user. Because the update key is associated
with the user’s global identity uid, the revoked user cannot
use update keys of other non-revoked users to update its
own secret key, even if it can compromise some non-revoked
users. Moreover, suppose the revoked user can corrupt some
other AAs (not the AA corresponding to the revoked at-
tributes), the item HðxaidÞvxaid �aid�aid in the secret key can
prevent users from updating their secret keys with update
keys of other users, since �aid is only known by the AAaid

and kept secret to all the users. This guarantees the back-
ward security.

Forward Security: After each attribute revocation oper-
ation, the version of the revoked attribute will be updated.
When new users join the system, their secret keys are as-
sociated with attributes with the latest version. However,
previously published ciphertexts are encrypted under at-
tributes with old version. The ciphertext update algorithm
in our protocol can update previously published cipher-
texts into the latest attribute version, such that newly joined
users can still decrypt previously published ciphertexts, if
their attributes can satisfy access policies associated with
ciphertexts. This guarantees the forward security. g

Theorem 3. Our access control scheme can resist the collusion
attack, even when some AAs are corrupted by the adversary.

Proof. Users may collude and combine their attributes to
decrypt the ciphertext, although they are not able to
decrypt the ciphertext alone. Due to the random number t
and the aid in the secret key, each component associated
with the attribute in the secret key is distinguishable from

each other, although some AAs may issue the same
attributes. Moreover, the secret key is also associated with
the user’s globally unique identity uid. Thus, users cannot
collude together to gain illegal access by combining their
attributes together.

However, when some AAs is corrupted by the adver-
sary, the collusion resistance becomes more complicated.
Specifically, the adversary may launch Attribute Forge
Attack, defined as follows. Suppose a user uid0 possesses
an attribute ‘‘xaid0

’’ from AAaid0
, while the adversary 	 does

not hold the attribute ‘‘xaid0
’’ from AAaid0

. The adversary 	
attempts to forge (‘‘clone’’) the attribute ‘‘xaid0

’’ from the
user uid0’s secret key by colluding with some other AAs.

In our scheme, the item gu
0
uid
tuid;aid�aid in the secret key

construction helps to resist this attack. When the adversary
corrupts any AAs, he/she can get all the global secret key
GSKuid for all the users in the system (because each AA has
full knowledge on one of the user’s global secret keys
GSKuid). Suppose all the Kxaid;uid in the secret key is
constructed without this item. The adversary can success-
fully forge the attribute ‘‘xaid0

’’ as

Kxaid0
;	 ¼ ðKxaid0

;uid0
ÞGSK	=GSKuid0 :

By adding the item gu
0
uidtuid;aid�aid , such attribute forge attack

will be eliminated. g

Privacy-Preserving Guarantee: Although the CA holds the
global master key GMK, it does not have any secret key issued
from the AA. Without the knowledge of g�aid , the CA cannot
decrypt any ciphertexts in the system. Our scheme can also
prevent the server from getting the content of the cloud data
by using the proxy-encryption method.

5 PERFORMANCE ANALYSIS

In this section, we analyze the performance of our scheme
by comparing with the Ruj’s DACC scheme [13] and our
previous scheme in the conference version [14], in terms of
storage overhead, communication cost and computation
efficiency.

We conduct the comparison under the same security
level. Let jpj be the element size in the G;GT ;Zp. Suppose
there are nA authorities in the system and each attribute
authority AAaid manages naid attributes. Let nU and nO be
the total number of users and owners in the system
respectively. For a user uid, let nuid;aidk ¼ jSuid;aidk j denote
the number of attributes that the user uid obtained from
AAaidk . Let ‘ be the total number of attributes in the
ciphertext.

5.1 Storage Overhead
The storage overhead is one of the most significant issues of
the access control scheme in cloud storage systems. Let
na ¼

PnA
k¼1 naidk denote the total number attributes in the

system and na;uid ¼
PnA

k¼1 nuid;aidk denote the total number of
attributes the user uid holds from all the AAs in the system.
We compare the storage overhead on each entity in the
system, as shown in Table 2.

TABLE 2
Storage Overhead on Each Entity

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 7, JULY 20141742

1) Storage Overhead on Each: AA Each AA needs store the
information of all the attributes in its domain. Besides, in
[14], each AAaid also needs to store the secret keys from all
the owners, where the storage overhead on each AA is also
linear to the total number of owners nO in the system. In our
scheme, besides the storage of attributes, eachAAaid also needs
to store a public key and a secret key for each user in the
system. Thus, the storage overhead on each AA in our scheme
is also linear to the number of users nU in the system.

2) Storage Overhead on Each Owner: The public para-
meters contribute the main storage overhead on the owner.
Besides the public parameters, in [13], owners are required to
re-encrypt the ciphertexts and in [14] owners are required to
generate the update information during the revocation,
where the owner should also hold the encryption secret
for every ciphertext in the system. This incurs a heavy storage
overhead on the owner, especially when the number of
ciphertext is large in cloud storage systems.

3) Storage Overhead on Each User: The storage overhead
on each user in our scheme comes from the secret keys
issued by all the AAs. However, in [13], the storage
overhead on each user consists of both the secret keys
issued by all the AAs and the ciphertext components that
associated with the revoked attribute x, because when the
ciphertext is re-encrypted, some of its components related
to the revoked attributes should be sent to each non-revoked
user who holds the revoked attributes. In [14], the user needs to
hold multiple secret keys for multiple data owners, which
means that the storage overhead on each user is also linear to
the number of owners nO in the system.

4) Storage Overhead on Server: The ciphertexts contribute
the main storage overhead on the server (here we do not
consider the encrypted data which are encrypted by the
symmetric content keys).

5.2 Communication Cost
The communication cost of the normal access control is
almost the same. Here, we only compare the communication
cost of attribute revocation, as shown in Table 3. The
communication cost of attribute revocation in [13] is linear to
the number of ciphertexts which contain the revoked attribute.

In [14], the communication overhead is linear to the total
number of attributes nc;aid belongs to the AAaid in all the
ciphertexts. It is not difficult to find that our scheme incurs
much less communication cost during the attribute revocation.

5.3 Computation Efficiency
We implement our scheme and DACC scheme [13] on a
Linux system with an Intel Core 2 Duo CPU at 3.16GHz and
4.00 GB RAM. The code uses the Pairing-Based Cryptog-
raphy (PBC) library version 0.5.12 to implement the access
control schemes. We use a symmetric elliptic curve �-
curve, where the base field size is 512-bit and the
embedding degree is 2. The �-curve has a 160-bit group
order, which means p is a 160-bit length prime. All the
simulation results are the mean of 20 trials.

We compare the computation efficiency of both encryp-
tion and decryption in two criteria: the number of
authorities and the number of attributes per authority.
Fig. 3a describes the comparison of encryption time versus
the number of authorities, where the involved number of
attributes per authority is set to be 10. Fig. 3c gives the
encryption time comparison versus the number of attri-
butes per authority, where the involved number of
authority is set to be 10. It is easy to find that our scheme
incurs less encryption time than DACC scheme in [13].

Fig. 3b shows the comparison of decryption time versus
the number of authorities, where the number of attributes the
user holds from each authority is set to be 10. Suppose the
user has the same number of attributes from each authority,
Fig. 3d describes the decryption time comparison versus the
number of attributes the user holds from each authority. In
Fig. 3d, the number of authority for the user is fixed to be 10. It
is not difficult to see that our scheme incurs less decryption
on the user than DACC scheme in [13].

Fig. 3e describes the time of cihertext update/re-
encryption versus the number of revoked attributes, and
our scheme is more efficient than [13]. The ciphertext
update/re-encryption contributes the main computation
overhead of the attribute revocation. In our conference
version [14], when an attribute is revoked from its cor-
responding authority AAaid0 , all the ciphertexts which are
associated with any attributes from AAaid0 should be
updated. In this paper, however, the attribute revocation
method only requires the update of ciphertexts which are
associated with the revoked attribute.

6 RELATED WORK

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [2]-[3]
is a promising technique that is designed for access control of

TABLE 3
Communication Cost for Attribute Revocation

Fig. 3. Comparison of Computation Time. (a) Encryption. (b) Decryption. (c) Encryption. (d) Decryption. (e) Re-encryption.

YANG AND JIA: EXPRESSIVE, EFFICIENT, AND REVOCABLE DATA ACCESS CONTROL 1743

encrypted data. There are two types of CP-ABE systems: single-
authority CP-ABE [2], [3], [4], [5] where all attributes are
managed by a single authority, and multi-authority CP-ABE [6],
[7], [8] where attributes are from different domains and
managed by different authorities. Multi-authority CP-ABE is
more appropriate for the access control of cloud storage systems,
as users may hold attributes issued by multiple authorities and
the data owners may share the data using access policy defined
over attributes from different authorities. However, due to the
attribute revocation problem, these multi-authority CP-ABE
schemes cannot be directly applied to data access control for
such multi-authority cloud storage systems.

To achieve revocation on attribute level, some re-
encryption-based attribute revocation schemes [9], [11]
are proposed by relying on a trusted server. We know that
the cloud server cannot be fully trusted by data owners,
thus traditional attribute revocation methods are no longer
suitable for cloud storage systems.

Ruj, Nayak and Ivan proposed a DACC scheme [13],
where an attribute revocation method is presented for the
Lewko and Waters’ decentralized ABE scheme [8]. Their
attribute revocation method does not require a fully trusted
server. But, it incurs a heavy communication cost since it
requires the data owner to transmit a new ciphertext
component to every non-revoked user.

7 CONCLUSION

In this paper, we proposed a revocable multi-authority CP-
ABE scheme that can support efficient attribute revocation.
Then, we constructed an effective data access control
scheme for multi-authority cloud storage systems. We
also proved that our scheme was provable secure in the
random oracle model. The revocable multi-authority CP-
ABE is a promising technique, which can be applied in any
remote storage systems and online social networks etc.

ACKNOWLEDGMENT

This work was supported by the Research Grants Council
of Hong Kong under Project CityU 114112.

REFERENCES

[1] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud
Computing,’’ National Institute of Standards and Technology,
Gaithersburg, MD, USA, Tech. Rep., 2009.

[2] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-Policy
Attribute-Based Encryption,’’ in Proc. IEEE Symp. Security and
privacy (S&P’07), 2007, pp. 321-334.

[3] B. Waters, ‘‘Ciphertext-Policy Attribute-Based Encryption: An
Expressive, Efficient, and Provably Secure Realization,’’ in Proc.
4th Int’l Conf. Practice and Theory in Public Key Cryptography
(PKC’11), 2011, pp. 53-70.

[4] V. Goyal, A. Jain, O. Pandey, and A. Sahai, ‘‘Bounded Ciphertext
Policy Attribute Based Encryption,’’ in Proc. 35th Int’l Colloquium
on Automata, Languages, and Programming (ICALP’08), 2008,
pp. 579-591.

[5] A.B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
‘‘Fully Secure Functional Encryption: Attribute-Based Encryp-
tion and (Hierarchical) Inner Product Encryption,’’ in Proc.
Advances in Cryptology-EUROCRYPT’10, 2010, pp. 62-91.

[6] M. Chase, ‘‘Multi-Authority Attribute Based Encryption,’’ in
Proc. 4th Theory of Cryptography Conf. Theory of Cryptography
(TCC’07), 2007, pp. 515-534.

[7] M. Chase and S.S.M. Chow, ‘‘Improving Privacy and Security
in Multi-Authority Attribute-Based Encryption,’’ in Proc. 16th
ACM Conf. Computer and Comm. Security (CCS’09), 2009,
pp. 121-130.

[8] A.B. Lewko and B. Waters, ‘‘Decentralizing Attribute-Based
Encryption,’’ in Proc. Advances in Cryptology-EUROCRYPT’11,
2011, pp. 568-588.

[9] S. Yu, C. Wang, K. Ren, and W. Lou, ‘‘Attribute Based Data
Sharing with Attribute Revocation,’’ in Proc. 5th ACM Symp.
Information, Computer and Comm. Security (ASIACCS’10), 2010,
pp. 261-270.

[10] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, ‘‘Scalable and Secure
Sharing of Personal Health Records in Cloud Computing Using
Attribute-Based Encryption,’’ IEEE Trans. Parallel Distributed
Systems, vol. 24, no. 1, pp. 131-143, Jan. 2013.

[11] J. Hur and D.K. Noh, ‘‘Attribute-Based Access Control with
Efficient Revocation in Data Outsourcing Systems,’’ IEEE
Trans. Parallel Distributed Systems, vol. 22, no. 7, pp. 1214-1221,
July 2011.

[12] S. Jahid, P. Mittal, and N. Borisov, ‘‘Easier: Encryption-Based
Access Control in Social Networks with Efficient Revocation,’’ in
Proc. 6th ACM Symp. Information, Computer and Comm. Security
(ASIACCS’11), 2011, pp. 411-415.

[13] S. Ruj, A. Nayak, and I. Stojmenovic, ‘‘DACC: Distributed Access
Control in Clouds,’’ in Proc. 10th IEEE Int’l Conf. TrustCom, 2011,
pp. 91-98.

[14] K. Yang and X. Jia, ‘‘Attribute-Based Access Control for
Multi-Authority Systems in Cloud Storage,’’ in Proc. 32th IEEE
Int’l Conf. Distributed Computing Systems (ICDCS’12), 2012,
pp. 1-10.

[15] D. Boneh and M.K. Franklin, ‘‘Identity-Based Encryption from
the Weil Pairing,’’ in Proc. 21st Ann. Int’l Cryptology Conf.:
Advances in Cryptology - CRYPTO’01, 2001, pp. 213-229.

[16] A.B. Lewko and B. Waters, ‘‘New Proof Methods for Attribute-
Based Encryption: Achieving Full Security through Selective
Techniques,’’ in Proc. 32st Ann. Int’l Cryptology Conf.: Advances in
Cryptology - CRYPTO’12, 2012, pp. 180-198.

Kan Yang received the BEng degree from
University of Science and Technology of China,
in 2008 and the PhD degree from City University
of Hong Kong, Hong Kong, in August 2013. He
was a visiting scholar in State University of New
York at Buffalo, in 2012. His research interests
include cloud security, big data security, cloud
data mining, cryptography, social networks,
wireless communication and networks, and
distributed systems. He is a Student Member of
the IEEE.

Xiaohua Jia received the BSc and MEng degrees
from University of Science and Technology of
China, in 1984 and 1987, respectively, and the
DSc degree in information science from University
of Tokyo, Japan, in 1991. He is currently Chair
Professor at the Department of Computer Science
at City University of Hong Kong. His research
interests include cloud computing and distributed
systems, computer networks, wireless sensor net-
works and mobile wireless networks. Prof. Jia is an
editor of IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS (2006-2009), Wireless Networks, Journal of World
Wide Web, Journal of Combinatorial Optimization, etc. He is the General
Chair of ACM MobiHoc 2008, TPC Co-Chair of IEEE MASS 2009, Area-
Chair of IEEE INFOCOM 2010, TPC Co-Chair of IEEE GlobeCom 2010,
Ad Hoc and Sensor Networking Symp, and Panel Co-Chair of IEEE
INFOCOM 2011. He is a Fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 7, JULY 20141744

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

