
Fast Nearest Neighbor Search with Keywords
Yufei Tao and Cheng Sheng

Abstract—Conventional spatial queries, such as range search and nearest neighbor retrieval, involve only conditions on objects’

geometric properties. Today, many modern applications call for novel forms of queries that aim to find objects satisfying both a spatial

predicate, and a predicate on their associated texts. For example, instead of considering all the restaurants, a nearest neighbor query

would instead ask for the restaurant that is the closest among those whose menus contain “steak, spaghetti, brandy” all at the same

time. Currently, the best solution to such queries is based on the IR2-tree, which, as shown in this paper, has a few deficiencies that

seriously impact its efficiency. Motivated by this, we develop a new access method called the spatial inverted index that extends the

conventional inverted index to cope with multidimensional data, and comes with algorithms that can answer nearest neighbor queries

with keywords in real time. As verified by experiments, the proposed techniques outperform the IR2-tree in query response time

significantly, often by a factor of orders of magnitude.

Index Terms—Nearest neighbor search, keyword search, spatial index

Ç

1 INTRODUCTION

A spatial database manages multidimensional objects
(such as points, rectangles, etc.), and provides fast

access to those objects based on different selection criteria.
The importance of spatial databases is reflected by the con-
venience of modeling entities of reality in a geometric man-
ner. For example, locations of restaurants, hotels, hospitals
and so on are often represented as points in a map, while
larger extents such as parks, lakes, and landscapes often as
a combination of rectangles. Many functionalities of a spa-
tial database are useful in various ways in specific contexts.
For instance, in a geography information system, range
search can be deployed to find all restaurants in a certain
area, while nearest neighbor retrieval can discover the res-
taurant closest to a given address.

Today, the widespread use of search engines has made it
realistic to write spatial queries in a brandnew way. Con-
ventionally, queries focus on objects’ geometric properties
only, such as whether a point is in a rectangle, or how close
two points are from each other. We have seen some modern
applications that call for the ability to select objects based on
both of their geometric coordinates and their associated
texts. For example, it would be fairly useful if a search
engine can be used to find the nearest restaurant that offers
“steak, spaghetti, and brandy” all at the same time. Note
that this is not the “globally” nearest restaurant (which
would have been returned by a traditional nearest neighbor
query), but the nearest restaurant among only those provid-
ing all the demanded foods and drinks.

There are easy ways to support queries that combine
spatial and text features. For example, for the above
query, we could first fetch all the restaurants whose
menus contain the set of keywords {steak, spaghetti,
brandy}, and then from the retrieved restaurants, find the
nearest one. Similarly, one could also do it reversely by
targeting first the spatial conditions—browse all the res-
taurants in ascending order of their distances to the query
point until encountering one whose menu has all the key-
words. The major drawback of these straightforward
approaches is that they will fail to provide real time
answers on difficult inputs. A typical example is that the
real nearest neighbor lies quite faraway from the query
point, while all the closer neighbors are missing at least
one of the query keywords.

Spatial queries with keywords have not been exten-
sively explored. In the past years, the community has
sparked enthusiasm in studying keyword search in rela-
tional databases. It is until recently that attention was
diverted to multidimensional data [12], [13], [21]. The
best method to date for nearest neighbor search with key-
words is due to Felipe et al. [12]. They nicely integrate
two well-known concepts: R-tree [2], a popular spatial
index, and signature file [11], an effective method for key-
word-based document retrieval. By doing so they develop
a structure called the IR2-tree [12], which has the strengths
of both R-trees and signature files. Like R-trees, the IR2-
tree preserves objects’ spatial proximity, which is the key
to solving spatial queries efficiently. On the other hand,
like signature files, the IR2-tree is able to filter a consider-
able portion of the objects that do not contain all the
query keywords, thus significantly reducing the number
of objects to be examined.

The IR2-tree, however, also inherits a drawback of sig-
nature files: false hits. That is, a signature file, due to its
conservative nature, may still direct the search to some
objects, even though they do not have all the keywords.
The penalty thus caused is the need to verify an object
whose satisfying a query or not cannot be resolved using
only its signature, but requires loading its full text

� Y. Tao is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong, and with the Division of
Web Science and Technology, Korea Advanced Institute of Science and
Technology, Korea. E-mail: taoyf@cse.cuhk.edu.hk.

� C. Sheng is with Google Switzerland. E-mail: jeru.sheng@gmail.com.

Manuscript received 4 Nov. 2012; revised 10 Mar. 2013; accepted 6 Apr. 2013;
date of publication 25 Apr. 2013; date of current version 18 Mar. 2014.
Recommended for acceptance by X. Zhou.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2013.66

878 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014

1041-4347 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

description, which is expensive due to the resulting ran-
dom accesses. It is noteworthy that the false hit problem
is not specific only to signature files, but also exists in
other methods for approximate set membership tests with
compact storage (see [7] and the references therein).
Therefore, the problem cannot be remedied by simply
replacing signature file with any of those methods.

In this paper, we design a variant of inverted index
that is optimized for multidimensional points, and is thus
named the spatial inverted index (SI-index). This access
method successfully incorporates point coordinates into a
conventional inverted index with small extra space,
owing to a delicate compact storage scheme. Meanwhile,
an SI-index preserves the spatial locality of data points,
and comes with an R-tree built on every inverted list at
little space overhead. As a result, it offers two competing
ways for query processing. We can (sequentially) merge
multiple lists very much like merging traditional inverted
lists by ids. Alternatively, we can also leverage the R-trees
to browse the points of all relevant lists in ascending
order of their distances to the query point. As demon-
strated by experiments, the SI-index significantly outper-
forms the IR2-tree in query efficiency, often by a factor of
orders of magnitude.

The rest of the paper is organized as follows. Section 2
defines the problem studied in this paper formally. Sec-
tion 3 surveys the previous work related to ours. Section
4 gives an analysis that reveals the drawbacks of the IR-
tree. Section 5 presents a distance browsing algorithm
for performing keyword-based nearest neighbor search.
Section 6 proposes the SI-idnex, and establishes its theo-
retical properties. Section 7 evaluates our techniques
with extensive experiments. Section 8 concludes the
paper with a summary of our findings.

2 PROBLEM DEFINITIONS

Let P be a set of multidimensional points. As our goal is to
combine keyword search with the existing location-finding
services on facilities such as hospitals, restaurants, hotels,
etc., we will focus on dimensionality 2, but our technique
can be extended to arbitrary dimensionalities with no tech-
nical obstacle. We will assume that the points in P have
integer coordinates, such that each coordinate ranges in
½0; t�, where t is a large integer. This is not as restrictive as it
may seem, because even if one would like to insist on real-
valued coordinates, the set of different coordinates repre-
sentable under a space limit is still finite and enumerable;
therefore, we could as well convert everything to integers
with proper scaling.

As with [12], each point p 2 P is associated with a set of
words, which is denoted as Wp and termed the document of
p. For example, if p stands for a restaurant, Wp can be its
menu, or if p is a hotel, Wp can be the description of its serv-
ices and facilities, or if p is a hospital, Wp can be the list of its
out-patient specialities. It is clear that Wp may potentially
contain numerous words.

Traditional nearest neighbor search returns the data
point closest to a query point. Following [12], we extend the
problem to include predicates on objects’ texts. Formally, in
our context, a nearest neighbor (NN) query specifies a point q

and a set Wq of keywords (we refer to Wq as the document of
the query). It returns the point in Pq that is the nearest to q,
where Pq is defined as

Pq ¼ fp 2 P jWq � Wpg: (1)

In other words, Pq is the set of objects in P whose docu-
ments contain all the keywords in Wq. In the case where Pq
is empty, the query returns nothing. The problem definition
can be generalized to k nearest neighbor (kNN) search,
which finds the k points in Pq closest to q; if Pq has less than
k points, the entire Pq should be returned.

For example, assume that P consists of eight points
whose locations are as shown in Fig. 1a (the black dots), and
their documents are given in Fig. 1b. Consider a query point
q at the white dot of Fig. 1a with the set of keywords
Wq ¼ fc; dg. Nearest neighbor search finds p6, noticing that
all points closer to q than p6 are missing either the query
keyword c or d. If k ¼ 2 nearest neighbors are wanted, p8 is
also returned in addition. The result is still fp6; p8g even if k
increases to 3 or higher, because only two objects have the
keywords c and d at the same time.

We consider that the data set does not fit in memory, and
needs to be indexed by efficient access methods in order to
minimize the number of I/Os in answering a query.

3 RELATED WORK

Section 3.1 reviews the information retrieval R-tree (IR2-
tree) [12], which is the state of the art for answering the
nearest neighbor queries defined in Section 2. Section 3.2
explains an alternative solution based on the inverted
index. Finally, Section 3.3 discusses other relevant work
in spatial keyword search.

3.1 The IR2-Tree

As mentioned before, the IR2-tree [12] combines the R-tree
with signature files. Next, we will review what is a signa-
ture file before explaining the details of IR2-trees. Our dis-
cussion assumes the knowledge of R-trees and the best-first
algorithm [14] for NN search, both of which are well-known
techniques in spatial databases.

Signature file in general refers to a hashing-based frame-
work, whose instantiation in [12] is known as superimposed
coding (SC), which is shown to be more effective than other

Fig. 1. (a) Shows the locations of points and (b) gives their associated
texts.

TAO AND SHENG: FAST NEAREST NEIGHBOR SEARCH WITH KEYWORDS 879

instantiations [11]. It is designed to perform membership
tests: determine whether a query word w exists in a set W of
words. SC is conservative, in the sense that if it says “no”,
then w is definitely not in W . If, on the other hand, SC
returns “yes”, the true answer can be either way, in which
case the whole W must be scanned to avoid a false hit.

In the context of [12], SC works in the same way as the
classic technique of bloom filter. In preprocessing, it builds a
bit signature of length l from W by hashing each word in W
to a string of l bits, and then taking the disjunction of all bit
strings. To illustrate, denote by hðwÞ the bit string of a word
w. First, all the l bits of hðwÞ are initialized to 0. Then, SC
repeats the following m times: randomly choose a bit and
set it to 1. Very importantly, randomization must use w as
its seed to ensure that the same w always ends up with an
identical hðwÞ. Furthermore, the m choices are mutually
independent, and may even happen to be the same bit. The
concrete values of l and m affect the space cost and false hit
probability, as will be discussed later.

Fig. 2 gives an example to illustrate the above process,
assuming l ¼ 5 and m ¼ 2. For example, in the bit string
hðaÞ of a, the third and fifth (counting from left) bits are set
to 1. As mentioned earlier, the bit signature of a set W of
words simply ORs the bit strings of all the members of W .
For instance, the signature of a set fa; bg equals 01101, while
that of fb; dg equals 01111.

Given a query keyword w, SC performs the membership
test in W by checking whether all the 1s of hðwÞ appear at
the same positions in the signature of W . If not, it is guaran-
teed that w cannot belong to W . Otherwise, the test cannot
be resolved using only the signature, and a scan of W fol-
lows. A false hit occurs if the scan reveals that W actually
does not contain w. For example, assume that we want to
test whether word c is a member of set fa; bg using only the
set’s signature 01101. Since the fourth bit of hðcÞ ¼ 00011 is

1 but that of 01101 is 0, SC immediately reports “no”. As
another example, consider the membership test of c in fb; dg
whose signature is 01111. This time, SC returns “yes”
because 01111 has 1s at all the bits where hðcÞ is set to 1; as a
result, a full scan of the set is required to verify that this is a
false hit.

The IR2-tree is an R-tree where each (leaf or nonleaf)
entry E is augmented with a signature that summarizes the
union of the texts of the objects in the subtree of E. Fig. 3
demonstrates an example based on the data set of Fig. 1 and
the hash values in Fig. 2. The string 01111 in the leaf entry
p2, for example, is the signature of Wp2

¼ fb; dg (which is
the document of p2; see Fig. 1b). The string 11111 in the non-
leaf entry E3 is the signature of Wp2

[Wp6
, namely, the set

of all words describing p2 and p6. Notice that, in general, the
signature of a nonleaf entry E can be conveniently obtained
simply as the disjunction of all the signatures in the child
node of E. A nonleaf signature may allow a query algorithm
to realize that a certain word cannot exist in the subtree. For
example, as the second bit of hðbÞ is 1, we know that no
object in the subtrees of E4 and E6 can have word b in its
texts—notice that the signatures of E4 and E6 have 0 as their
second bits. In general, the signatures in an IR2-tree may
have different lengths at various levels.

On conventional R-trees, the best-first algorithm [14] is a
well-known solution to NN search. It is straightforward to
adapt it to IR2-trees. Specifically, given a query point q and
a keyword set Wq, the adapted algorithm accesses the
entries of an IR2-tree in ascending order of the distances of
their MBRs to q (the MBR of a leaf entry is just the point
itself), pruning those entries whose signatures indicate the
absence of at least one word of Wq in their subtrees. When-
ever a leaf entry, say of point p, cannot be pruned, a random
I/O is performed to retrieve its text description Wp. If Wq is
a subset of Wp, the algorithm terminates with p as the
answer; otherwise, it continues until no more entry remains
to be processed. In Fig. 3, assume that the query point q has
a keyword set Wq ¼ fc; dg. It can be verified that the algo-
rithm must read all the nodes of the tree, and fetch the docu-
ments of p2, p4, and p6 (in this order). The final answer is p6,
while p2 and p4 are false hits.

3.2 Solutions Based on Inverted Indexes

Inverted indexes (I-index) have proved to be an effective
access method for keyword-based document retrieval. In
the spatial context, nothing prevents us from treating the

Fig. 2. Example of bit string computation with l ¼ 5 and m ¼ 2.

Fig. 3. Example of an IR2-tree. (a) shows the MBRs of the underlying R-tree and (b) gives the signatures of the entries.

880 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014

text description Wp of a point p as a document, and then,
building an I-index. Fig. 4 illustrates the index for the data
set of Fig. 1. Each word in the vocabulary has an inverted
list, enumerating the ids of the points that have the word in
their documents.

Note that the list of each word maintains a sorted order
of point ids, which provides considerable convenience in
query processing by allowing an efficient merge step. For
example, assume that we want to find the points that have
words c and d. This is essentially to compute the intersection
of the two words’ inverted lists. As both lists are sorted in
the same order, we can do so by merging them, whose I/O
and CPU times are both linear to the total length of the lists.

Recall that, in NN processing with IR2-tree, a point
retrieved from the index must be verified (i.e., having its text
description loaded and checked). Verification is also neces-
sary with I-index, but for exactly the opposite reason. For
IR2-tree, verification is because we do not have the detailed
texts of a point, while for I-index, it is because we do not
have the coordinates. Specifically, given an NN query q
with keyword set Wq, the query algorithm of I-index first
retrieves (by merging) the set Pq of all points that have all
the keywords of Wq, and then, performs jPqj random I/Os
to get the coordinates of each point in Pq in order to evaluate
its distance to q.

According to the experiments of [12], when Wq has only a
single word, the performance of I-index is very bad, which
is expected because everything in the inverted list of that
word must be verified. Interestingly, as the size of Wq

increases, the performance gap between I-index and IR2-
tree keeps narrowing such that I-index even starts to outper-
form IR2-tree at jWqj ¼ 4. This is not as surprising as it may
seem. As jWqj grows large, not many objects need to be veri-
fied because the number of objects carrying all the query
keywords drops rapidly. On the other hand, at this point an
advantage of I-index starts to pay off. That is, scanning an
inverted list is relatively cheap because it involves only
sequential I/Os,1 as opposed to the random nature of
accessing the nodes of an IR2-tree.

3.3 Other Relevant Work

Our treatment of nearest neighbor search falls in the general
topic of spatial keyword search, which has also given rise to
several alternative problems. A complete survey of all those
problems goes beyond the scope of this paper. Below we

mention several representatives, but interested readers can
refer to [4] for a nice survey.

Cong et al. [10] considered a form of keyword-based
nearest neighbor queries that is similar to our formulation,
but differs in how objects’ texts play a role in determining
the query result. Specifically, aiming at an IR flavor, the
approach of [10] computes the relevance between the docu-
ments of an object p and a query q. This relevance score is
then integrated with the Euclidean distance between p and
q to calculate an overall similarity of p to q. The few objects
with the highest similarity are returned. In this way, an
object may still be in the query result, even though its docu-
ment does not contain all the query keywords. In our
method, same as [12], object texts are utilized in evaluating
a boolean predicate, i.e., if any query keyword is missing in
an object’s document, it must not be returned. Neither
approach subsumes the other, and both make sense in dif-
ferent applications. As an application in our favor, consider
the scenario where we want to find a close restaurant serv-
ing “steak, spaghetti and brandy”, and do not accept any
restaurant that do not serve any of these three items. In this
case, a restaurant’s document either fully satisfies our
requirement, or does not satisfy at all. There is no “partial
satisfaction”, as is the rationale behind the approach of [10].

In geographic web search, each webpage is assigned a
geographic region that is pertinent to the webpage’s con-
tents. In web search, such regions are taken into account
so that higher rankings are given to the pages in the
same area as the location of the computer issuing the
query (as can be inferred from the computer’s IP
address) [8], [13], [21]. The underpinning problem that
needs to be solved is different from keyword-based near-
est neighbor search, but can be regarded as the combina-
tion of keyword search and range queries.

Zhang et al. [20] dealt with the so-calledm-closest keywords
problem. Specifically, letP be a set of points each of which car-
ries a single keyword. Given a set Wq of query keywords
(note: no query point q is needed), the goal is to find
m ¼ jWqj points from P such that (i) each point has a distinct
keyword in Wq, and (ii) the maximum mutual distance of
these points is minimized (among all subsets of m points in
P fulfilling the previous condition). In other words, the prob-
lem has a “collaborative” nature in that the resulting m
points should cover the query keywords together. This is
fundamentally different from our work where there is no
sense of collaboration at all, and instead the quality of each
individual point with respect to a query can be quantified into
a concrete value. Cao et al. [6] proposed collective spatial key-
word querying, which is based on similar ideas, but aims at
optimizing different objective functions.

In [5], Cong et al. proposed the concept of prestige-based
spatial keyword search. The central idea is to evaluate the sim-
ilarity of an object p to a query by taking also into account
the objects in the neighborhood of p. Lu et al. [17] recently
combined the notion of keyword search with reverse nearest
neighbor queries.

Although keyword search has only started to receive
attention in spatial databases, it is already thoroughly stud-
ied in relational databases, where the objective is to enable a
querying interface that is similar to that of search engines,
and can be easily used by naive users without knowledge

Fig. 4. Example of an inverted index.

1. Strictly speaking, this is not precisely true because merging may
need to jump across different lists; however, random I/Os will account
for only a small fraction of the total overhead as long as a proper pre-
fetching strategy is employed, e.g., reading 10 sequential pages at a
time.

TAO AND SHENG: FAST NEAREST NEIGHBOR SEARCH WITH KEYWORDS 881

about SQL. Well known systems with such mechanisms
include DBXplorer [1], Discover [15], Banks [3], and so on.
Interested readers may refer to [9] for additional references
into that literature.

4 DRAWBACKS OF THE IR2-TREE

The IR2-tree is the first access method for answering NN
queries with keywords. As with many pioneering solutions,
the IR2-tree also has a few drawbacks that affect its effi-
ciency. The most serious one of all is that the number of
false hits can be really large when the object of the final
result is faraway from the query point, or the result is sim-
ply empty. In these cases, the query algorithm would need
to load the documents of many objects, incurring expensive
overhead as each loading necessitates a random access.

To explain the details, we need to first discuss some
properties of SC (the variant of signature file used in the
IR2-tree). Recall that, at first glance, SC has two parame-
ters: the length l of a signature, and the number m of
bits chosen to set to 1 in hashing a word. There is, in
fact, really just a single parameter l, because the optimal
m (which minimizes the probability of a false hit) has
been solved by Stiassny [18]:

mopt ¼ l � lnð2Þ=g; (2)

where g is the number of distinct words in the set W on
which the signature is being created. Even with such an
optimal choice of m, Faloutsos and Christodoulakis [11]
show that the false hit probability equals

Pfalse ¼ ð1=2Þmopt : (3)

Put in a different way, given any word w that does not
belong to W , SC will still report “yes” with probability
Pfalse, and demand a full scan of W .

It is easy to see that Pfalse can be made smaller by adopt-
ing a larger l (note that g is fixed as it is decided by W). In
particular, asymptotically speaking, to make sure Pfalse is at
least a constant, l must be VðgÞ, i.e., the signature should
have Vð1Þ bit for every distinct word of W . Indeed, for the
IR2-tree, Felipe et al. [12] adopt a value of l that is approxi-
mately equivalent to 4g in their experiments (g here is the
average number of distinct words a data point has in its text
description). It thus follows that

Pfalse ¼ ð1=2Þ4lnð2Þ ¼ 0:15: (4)

The above result takes a heavy toll on the efficiency of
the IR2-tree. For simplicity, let us first assume that the
query keyword set Wq has only a single keyword w (i.e.,
jWqj ¼ 1). Without loss of generality, let p be the object
of the query result, and S be the set of data points that
are closer to the query point q than p. In other words,
none of the points in S has w in their text documents
(otherwise, p cannot have been the final result). By Equa-
tion (4), roughly 15 percent of the points in S cannot be
pruned using their signatures, and thus, will become
false hits. This also means that the NN algorithm is
expected to perform at least 0:15jSj random I/Os.

So far we have considered jWqj ¼ 1, but the discussion
extends to arbitrary jWqj in a straightforward manner. It is
easy to observe (based on Equation (4)) that, in general, the
false hit probability satisfies

Pfalse � 0:15jWq j: (5)

When jWqj > 1, there is another negative fact that adds to
the deficiency of the IR2-tree: for a greater jWqj, the expected
size of S increases dramatically, because fewer and fewer
objects will contain all the query keywords. The effect is so
severe that the number of random accesses, given by
PfalsejSj, may escalate as jWqj grows (even with the decrease
of Pfalse). In fact, as long as jWqj > 1, S can easily be the entire
data set when the user tries out an uncommon combination
of keywords that does not exist in any object. In this case, the
number of random I/Os would be so prohibitive that the
IR2-tree would not be able to give real time responses.

5 MERGING AND DISTANCE BROWSING

Since verification is the performance bottleneck, we should
try to avoid it. There is a simple way to do so in an I-index:
one only needs to store the coordinates of each point
together with each of its appearances in the inverted lists.
The presence of coordinates in the inverted lists naturally
motivates the creation of an R-tree on each list indexing the
points therein (a structure reminiscent of the one in [21]).
Next, we discuss how to perform keyword-based nearest
neighbor search with such a combined structure.

The R-trees allow us to remedy an awkwardness in
the way NN queries are processed with an I-index.
Recall that, to answer a query, currently we have to first
get all the points carrying all the query words in Wq by
merging several lists (one for each word in Wq). This
appears to be unreasonable if the point, say p, of the
final result lies fairly close to the query point q. It would
be great if we could discover p very soon in all the rele-
vant lists so that the algorithm can terminate right away.
This would become a reality if we could browse the lists
synchronously by distances as opposed to by ids. In par-
ticular, as long as we could access the points of all lists
in ascending order of their distances to q (breaking ties
by ids), such a p would be easily discovered as its copies
in all the lists would definitely emerge consecutively in
our access order. So all we have to do is to keep count-
ing how many copies of the same point have popped up
continuously, and terminate by reporting the point once
the count reaches jWqj. At any moment, it is enough to
remember only one count, because whenever a new
point emerges, it is safe to forget about the previous one.

As an example, assume that we want to perform NN
search whose query point q is as shown in Fig. 1, and whose
Wq equals fc; dg. Hence, we will be using the lists of words c
and d in Fig. 4. Instead of expanding these lists by ids, the
new access order is by distance to q, namely, p2; p3;
p6; p6; p5; p8; p8. The processing finishes as soon as the sec-
ond p6 comes out, without reading the remaining points.
Apparently, if k nearest neighbors are wanted, termination
happens after having reported k points in the same fashion.

882 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014

Distance browsing is easy with R-trees. In fact, the
best-first algorithm is exactly designed to output data
points in ascending order of their distances to q. How-
ever, we must coordinate the execution of best-first on
jWqj R-trees to obtain a global access order. This can be
easily achieved by, for example, at each step taking a
“peek” at the next point to be returned from each tree,
and output the one that should come next globally. This
algorithm is expected to work well if the query keyword
set Wq is small. For sizable Wq, the large number of ran-
dom accesses it performs may overwhelm all the gains
over the sequential algorithm with merging.

A serious drawback of the R-tree approach is its space
cost. Notice that a point needs to be duplicated once for
every word in its text description, resulting in very expen-
sive space consumption. In the next section, we will over-
come the problem by designing a variant of the inverted
index that supports compressed coordinate embedding.

6 SPATIAL INVERTED LIST

The spatial inverted list (SI-index) is essentially a compressed
version of an I-index with embedded coordinates as
described in Section 5. Query processing with an SI-index
can be done either by merging, or together with R-trees in a
distance browsing manner. Furthermore, the compression
eliminates the defect of a conventional I-index such that an
SI-index consumes much less space.

6.1 The Compression Scheme

Compression is already widely used to reduce the size of an
inverted index in the conventional context where each
inverted list contains only ids. In that case, an effective
approach is to record the gaps between consecutive ids, as
opposed to the precise ids. For example, given a set S of
integers f2; 3; 6; 8g, the gap-keeping approach will store
f2; 1; 3; 2g instead, where the ith value (i � 2) is the differ-
ence between the ith and ði� 1Þth values in the original S.
As the original S can be precisely reconstructed, no infor-
mation is lost. The only overhead is that decompression
incurs extra computation cost, but such cost is negligible
compared to the overhead of I/Os. Note that gap-keeping
will be much less beneficial if the integers of S are not in a
sorted order. This is because the space saving comes from
the hope that gaps would be much smaller (than the original
values) and hence could be represented with fewer bits.
This would not be true had S not been sorted.

Compressing an SI-index is less straightforward. The dif-
ference here is that each element of a list, a.k.a. a point p, is
a triplet ðidp; xp; ypÞ, including both the id and coordinates
of p. As gap-keeping requires a sorted order, it can be
applied on only one attribute of the triplet. For example, if
we decide to sort the list by ids, gap-keeping on ids may
lead to good space saving, but its application on the x- and
y-coordinates would not have much effect.

To attack this problem, let us first leave out the ids and
focus on the coordinates. Even though each point has two
coordinates, we can convert them into only one so that gap-
keeping can be applied effectively. The tool needed is a
space filling curve (SFC) such as Hilbert- or Z-curve. SFC
converts a multidimensional point to a 1D value such that if

two points are close in the original space, their 1D values
also tend to be similar. As dimensionality has been brought
to 1, gap-keeping works nicely after sorting the (converted)
1D values.

For example, based on the Z-curve,2 the resulting values,
called Z-values, of the points in Fig. 1a are demonstrated in
Fig. 5 in ascending order. With gap-keeping, we will store
these 8 points as the sequence 12; 3; 8; 1; 7; 9; 2; 7. Note that
as the Z-values of all points can be accurately restored, the
exact coordinates can be restored as well.

Let us put the ids back into consideration. Now that we
have successfully dealt with the two coordinates with a 2D
SFC, it would be natural to think about using a 3D SFC to
cope with ids too. As far as space reduction is concerned,
this 3D approach may not a bad solution. The problem is
that it will destroy the locality of the points in their original
space. Specifically, the converted values would no longer
preserve the spatial proximity of the points, because ids in
general have nothing to do with coordinates.

If one thinks about the purposes of having an id, it will be
clear that it essentially provides a token for us to retrieve
(typically, from a hash table) the details of an object, e.g.,
the text description and/or other attribute values. Further-
more, in answering a query, the ids also provide the base
for merging. Therefore, nothing prevents us from using a
pseudo-id internally. Specifically, let us forget about the
“real” ids, and instead, assign to each point a pseudo-id
that equals its sequence number in the ordering of Z-values.
For example, according to Fig. 5, p6 gets a pseudo-id 0, p2

gets a 1, and so on. Obviously, these pseudo-ids can co-exist
with the “real” ids, which can still be kept along with
objects’ details.

The benefit we get from pseudo-ids is that sorting them
gives the same ordering as sorting the Z-values of the
points. This means that gap-keeping will work at the same
time on both the pseudo-ids and Z-values. As an example
that gives the full picture, consider the inverted list of word
d in Fig. 4 that contains p2; p3; p6; p8, whose Z-values are
15; 52; 12; 23 respectively, with pseudo-ids being 1; 6; 0; 2,
respectively. Sorting the Z-values automatically also puts
the pseudo-ids in ascending order. With gap-keeping, the
Z-values are recorded as 12; 3; 8; 29 and the pseudo-ids as
0; 1; 1; 4. So we can precisely capture the four points with
four pairs: fð0; 12Þ; ð1; 3Þ; ð1; 8Þ; ð4; 29Þg.

Since SFC applies to any dimensionality, it is straightfor-
ward to extend our compression scheme to any dimensional
space. As a remark, we are aware that the ideas of space fill-
ing curves and internal ids have also been mentioned in [8]
(but not for the purpose of compression). In what follows,
we will analyze the space of the SI-index and discuss how

2. By the Z-curve, a point (x, y) is converted to a 1D value by inter-
leaving the bits of x and y from left to right. For example, in Fig. 1a, the
x coordinate of p4 is 2 ¼ 010 and its y coordinate is 4 ¼ 100. Hence, the
converted 1D value of p4 equals 011000, where the underlined bits
come from 010 and the others from 100.

Fig. 5. Converted values of the points in Fig. 1a based on Z-curve.

TAO AND SHENG: FAST NEAREST NEIGHBOR SEARCH WITH KEYWORDS 883

to build a good R-tree on each inverted list. None of these
issues is addressed in [8].

Theoretical analysis. Next we will argue from a theoretical
perspective that our compression scheme has a low space
complexity. As the handling of each inverted list is the
same, it suffices to focus on only one of them, denoted as L.
Let us assume that the whole data set has n � 1 points, and
r of them appear in L. To make our analysis general, we
also take the dimensionality d into account. Also, recall that
each coordinate ranges from 0 to t, where t is a large integer.
Naively, each pseudo-id can be represented with Oðlog nÞ
bits, and each coordinate with Oðlog tÞ bits. Therefore, with-
out any compression, we can represent the whole L in
Oðrðlog nþ d log tÞÞ bits.

Now we start to discuss the space needed to compress L
with our solution. First of all, we give a useful fact on gap-
keeping in general:

Lemma 1. Let v1, v2; . . . ; vr be r non-descending integers in the
range from 1 to � � 1. Gap-keeping requires at most
Oðrlogð�=rÞÞ bits to encode all of them.

Proof. Denote ui ¼ vi � vi�1 for i 2 ½2; r�, and u1 ¼ v1. Note
that fu1; u2; . . . ; urg is exactly the set of values gap-keep-
ing stores. Each ui (1 � i � r) occupies OðloguiÞ bits.
Hence, recording all of u1, u2; . . . ; ur requires at most

Oðlog u1 þ log u2 þ � � � þ log urÞ ¼ O log
Yr

i¼1

ui

 ! !
(6)

bits. A crucial observation is that

1 � u1 þ u2 þ � � � þ ur � �

as all of v1, v2; . . . ; vr are between 1 and �. Therefore,Qr
i¼1 ui is at most ð�=rÞr. It thus follows that Equation (6)

is bounded by Oðr logð�=rÞÞ. tu
As a corollary, we get:

Lemma 2. Our compression scheme storesLwithOðrðlogðn=rÞþ
logðtd=rÞÞÞ bits.

Proof. Our compression scheme essentially applies gap-
keeping to two sets of integers. The first set includes all
the pseudo-ids of the points in L, and the second
includes their Z-values. Every pseudo-id ranges from 0
to n� 1, while each Z-value from 0 to td � 1. Hence, by
Lemma 1, the space needed to store all r pseudo-ids is
Oðrðlogðn=rÞÞ, and the space needed to store r Z-values is
Oðrðlogðtd=rÞÞ. tu
It turns out that the complexity in the above lemma is

already the lowest in the worst case, and no storage
scheme is able to do any better, as shown in the follow-
ing lemma. A similar result also holds for conventional
inverted list (without coordinates embedding) as men-
tioned in [19], chapter 15].

Lemma 3. Any compression scheme must store L with
Vðrðlogðn=rÞ þ logðtd=rÞÞÞ bits in the worst case.

Proof. The lower bound can be established with an informa-
tion-theoretic approach. First, storing n pseudo-ids must
take at least r logðn=rÞ bits in the worst case. Remember
that each pseudo-id can be any integer from 0 to n� 1,
and thus, there are n

r

� �
different ways to choose r

different pseudo-ids. Whatever storage scheme must at
least be able to distinguish that many ways. It thus fol-
lows that at least log n

r

� �
¼ Qðr logðn=rÞÞ bits are neces-

sary in the worst case. Second, similar reasoning also
applies to the Z-values. Since each Z-value ranges from 0
to td � 1, any storage scheme thus needs at least log ðtdr Þ ¼
Qðr logðtd=rÞÞ bits to encode r Z-values in the worst case.
This gives our target result. tu
Blocking. The SI-index described up to now applies gap-

keeping to capture all points continuously in a row. In
decompressing, we must scan an inverted list from its
beginning even though the point of our interest lies deep
down the list (remember that a point cannot be restored
without all the gaps preceding it being accumulated). This
is not a problem for a query algorithm that performs
sequential scan on the list. But in some scenarios (e.g., when
we would like to build an R-tree on the list, as in the next
section), it is very helpful to restore a point anywhere in the
list much faster than reading from the beginning every time.

The above concern motivates the design of the blocked
SI-index, which differs only in that each list is cut into
blocks each of which holds QðBÞ points where B is a
parameter to be specified later. For example, given a list
of fp1; p2; p3; p4; p5; p6g, we would store it in two blocks
fp1; p2; p3g and fp4; p5; p6g if the block size is 3. Gap-keep-
ing is now enforced within each block separately. For
example, in block fp1; p2; p3g, we will store the exact
pseudo-id and Z-value of p1, the gaps of p2 (from p1) in
its pseudo-id and Z-value, respectively, and similarly,
the gaps of p3 from p2. Apparently, blocking allows to
restore all the points in a block locally, as long as the
starting address of the block is available. It is no longer
necessary to always scan from the beginning.

Since we need to keep the exact values of Qðr=BÞ points,
the space cost increases by an addictive factor of
Qð rB ðlog nþ d log tÞÞ. This, however, does not affect the
overall space complexity in Lemma 2 if we choose B as a
polynomial function of r, i.e., B ¼ rc for any positive c < 1.
In our experiments, the size of B is roughly

ffiffiffi
r

p
, namely, the

value of B can even vary for different inverted lists (i.e., a
block may occupy a different number of disk pages).
Finally, in a blocked SI-index, each inverted list can also be
sequentially accessed from the beginning, as long as we put
all its blocks at consecutive pages.

6.2 Building R-Trees

Remember that an SI-index is no more than a com-
pressed version of an ordinary inverted index with coor-
dinates embedded, and hence, can be queried in the
same way as described in Section 3.2, i.e., by merging
several inverted lists. In the sequel, we will explore the
option of indexing each inverted list with an R-tree. As
explained in Section 3.2, these trees allow us to process a
query by distance browsing, which is efficient when the
query keyword set Wq is small.

Our goal is to let each block of an inverted list be directly
a leaf node in the R-tree. This is in contrast to the alternative
approach of building an R-tree that shares nothing with the
inverted list, which wastes space by duplicating each point
in the inverted list. Furthermore, our goal is to offer two

884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014

search strategies simultaneously: merging (Section 3.2) and
distance browsing (Section 5).

As before, merging demands that points of all lists
should be ordered following the same principle. This is not
a problem because our design in the previous section has
laid down such a principle: ascending order of Z-values.
Moreover, this ordering has a crucial property that conven-
tional id-based ordering lacks: preservation of spatial prox-
imity. The property makes it possible to build good R-trees
without destroying the Z-value ordering of any list. Specifi-
cally, we can (carefully) group consecutive points of a list
into MBRs, and incorporate all MBRs into an R-tree. The
proximity-preserving nature of the Z-curve will ensure that
the MBRs are reasonably small when the dimensionality is
low. For example, assume that an inverted list includes all
the points in Fig. 5, sorted in the order shown. To build an
R-tree, we may cut the list into 4 blocks fp6; p2g, fp8; p4g,
fp7; p1g, and fp3; p5g. Treating each block as a leaf node
results in an R-tree identical to the one in Fig. 3a. Linking all
blocks from left to right preserves the ascending order of
the points’ Z-values.

Creating an R-tree from a space filling curve has been
considered by Kamel and Faloutsos [16]. Different from
their work, we will look at the problem in a more rigorous
manner, and attempt to obtain the optimal solution. For-
mally, the underlying problem is as follows. There is an
inverted list L with, say, r points p1, p2; . . . ; pr, sorted in
ascending order of Z-values. We want to divide L into a
number of disjoint blocks such that (i) the number of points
in each block is between B and 2B� 1, where B is the block
size, and (ii) the points of a block must be consecutive in the
original ordering of L. The goal is to make the resulting
MBRs of the blocks as small as possible.

How “small” an MBR is can be quantified in a number of
ways. For example, we can take its area, perimeter, or a
function of both. Our solution, presented below, can be
applied to any quantifying metric, but our discussion will
use area as an example. The cost of a dividing scheme of L is
thus defined as the sum of the areas of all MBRs. For nota-
tional convenience, given any 1 � i � j � r, we will use
C½i; j� to denote the cost of the optimal division of the subse-
quence pi, piþ1; . . . ; pj. The aim of the above problem is thus
to find C½1; r�. We also denote by A½i; j� the area of the MBR
enclosing pi, piþ1; . . . ; pj.

Now we will discuss the properties of C½i; j�. There are
j� iþ 1 points from pi to pj. So C½i; j� is undefined if
j� iþ 1 < B, because we will never create a block with
less than B points. Furthermore, in the case where j� iþ
1 2 ½B; 2B� 1�, C½i; j� can be immediately solved as the area
of the MBR enclosing all the j� iþ 1 points. Hence, next
we will focus on the case j� iþ 1 � 2B.

Notice that when we try to divide the set of points
fpi; piþ1; . . . ; pjg, there are at most B� 1 ways to decide
which points should be in the same block together with
the first point pi. Specifically, a block of size B must
include, besides pi, also piþ1, piþ2, all the way to piþB�1. If
the block size goes to Bþ 1, then the additional point will
have to be piþB; similarly, to get a block size of Bþ 2, we
must also put in piþBþ1 and so on, until the block size
reaches the maximum 2B� 1. Regardless of the block
size, the remaining points (that are not together with p1)

constitute a smaller set on which the division problem
needs to be solved recursively. The total number of
choices may be less than B� 1 because care must be
taken to make sure that the number of those remaining
points is at least B. In any case, C½i; j� equals the lowest
cost of all the permissible choices, or formally:

C½i; j� ¼ min
minfiþ2B�2;jþ1�Bg

k¼iþB�1
A½i; k� þ C½kþ 1; j�ð Þ: (7)

The equation indicates the existence of solutions based
on dynamic programming. One can easily design an algo-
rithm that runs in OðBr2Þ time: it suffices to derive C½i; j� in
ascending order of the value of j� i, namely, starting with
those with j� i ¼ 2B, followed by those with j� i ¼
2Bþ 1, and so on until finishing at j� i ¼ r� 1. We can sig-
nificantly improve the computation time to OðBrÞ, by the
observation that j can be fixed to r throughout the computa-
tion in order to obtain C½1; r� eventually.

We have finished explaining how to build the leaf nodes
of an R-tree on an inverted list. As each leaf is a block, all
the leaves can be stored in a blocked SI-index as described
in Section 6.1. Building the nonleaf levels is trivial, because
they are invisible to the merging-based query algorithms,
and hence, do not need to preserve any common ordering.
We are free to apply any of the existing R-tree construction
algorithms. It is noteworthy that the nonleaf levels add only
a small amount to the overall space overhead because, in an
R-tree, the number of nonleaf nodes is by far lower than
that of leaf nodes.

7 EXPERIMENTS

In the sequel, we will experimentally evaluate the practical
efficiency of our solutions to NN search with keywords,
and compare them against the existing methods.

Competitors. The proposed SI-index comes with two
query algorithms based on merging and distance browsing
respectively. We will refer to the former as SI-m and the
other as SI-b. Our evaluation also covers the state-of-the-art
IR2-tree; in particular, our IR2-tree implementation is the
fast variant developed in [12], which uses longer signatures
for higher levels of tree. Furthermore, we also include the
method, named index file R-tree (IFR) henceforth, which, as
discussed in Section 5, indexes each inverted list (with coor-
dinates embedded) using an R-tree, and applies distance
browsing for query processing. IFR can be regarded as an
uncompressed version of SI-b.

Data. Our experiments are based on both synthetic and
real data. The dimensionality is always 2, with each axis
consisting of integers from 0 to 16; 383. The synthetic cate-
gory has two data sets: Uniform and Skew, which differ in
the distribution of data points, and in whether there is a cor-
relation between the spatial distribution and objects’ text
documents. Specifically, each data set has 1 million points.
Their locations are uniformly distributed in Uniform,
whereas in Skew, they follow the Zipf distribution.3 For both
data sets, the vocabulary has 200 words, and each word

3. We create each point independently by generating each of its
coordinates (again, independently) according to Zipf.

TAO AND SHENG: FAST NEAREST NEIGHBOR SEARCH WITH KEYWORDS 885

appears in the text documents of 50k points. The difference
is that the association of words with points is completely
random in Uniform, while in Skew, there is a pattern of
“word-locality”: points that are spatially close have almost
identical text documents.

Our real data set, referred to as Census below, is a combi-
nation of a spatial data set published by the US Census
Bureau,4 and the web pages from Wikipedia.5 The spatial
data set contains 20;847 points, each of which represents a
county subdivision. We use the name of the subdivision to
search for its page at Wikipedia, and collect the words there
as the text description of the corresponding data point. All
the points, as well as their text documents, constitute the
data set Census. The main statistics of all of our data sets are
summarized in Table 1.

Parameters. The page size is always 4;096 bytes. All the SI-
indexes have a block size of 200 (see Section 6.1 for the
meaning of a block). The parameters of IR2-tree are set in
exactly the same way as in [12]. Specifically, the tree on Uni-
form has 3 levels, whose signatures (from leaves to the root)
have respectively 48, 768, and 840 bits each. The corre-
sponding lengths for Skew are 48, 856, and 864. The tree on
Census has two levels, whose lengths are 2; 000 and 47; 608,
respectively.

Queries. As in [12], we consider NN search with the
AND semantic. There are two query parameters: (i) the
number k of neighbors requested, and (ii) the number
jWqj of keywords. Each workload has 100 queries that
have the same parameters, and are generated indepen-
dently as follows. First, the query location is uniformly

distributed in the data space. Second, the set Wq of key-
words is a random subset (with the designated size jWqj)
of the text description of a point randomly sampled
from the underlying data set. We will measure the query
cost as the total I/O time (in our system, on average,
every sequential page access takes about 1 milli-second,
and a random access is around 10 times slower).

Results on query efficiency. Let us start with the query
performance with respect to the number of keywords
jWqj. For this purpose, we will fix the parameter k to 10,
i.e., each query retrieves 10 neighbors. For each compet-
ing method, we will report its average query time in proc-
essing a workload. The results are shown in Fig. 6, where
(a), (b), (c) are about data sets Uniform, Skew, and Census,
respectively. In each case, we present the I/O time of IR2-
tree separately in a table, because it is significantly more
expensive than the other solutions. The experiment on

4. http://www.census.gov/geo/www/gazetteer/places2k.html, and follow
the link “County Subdivisions”.

5. http://en.wikipedia.org.

TABLE 1
Data Set Statistics

(a) (b) (c)

Fig. 6. Query time versus the number of keywords jWqj: (a) Data set Uniform, (b) Skew, (c) Census. The number k of neighbors retrieved is 10.

Fig. 7. Number of false hits of IR2-tree.

886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014

Uniform inspects jWqj up to 4, because almost all queries
with greater jWqj return no result at all.

The fastest method is either SI-m or SI-b in all cases. In
particular, SI-m is especially efficient on Census where each
inverted list is relatively small (this is hinted from the col-
umn “the number objects per word” in Table 1), and hence,
index-based search is not as effective as simple scans. The
behavior of the two algorithms on Uniform very well con-
firms the intuition that distance browsing is more suitable
when jWqj is small, but is outperformed by merging when
Wq is sizable. On Skew, SI-b is significantly better than SI-m
due to the “word-locality” pattern. As for IFR, its behavior
in general follows that of SI-b because they differ only in
whether compression is performed. The superiority of SI-b
stems from its larger node capacity.

IR2-tree, on the other hand, fails to give real time answers,
and is often slower than our solutions by a factor of orders
of magnitude, particularly on Uniform and Census where
word-locality does not exist. As analyzed in Section 3.1, the
deficiency of IR2-tree is mainly caused by the need to verify
a vast number of false hits. To illustrate this, Fig. 7 plots the
average false hit number per query (in the experiments of
Fig. 6) as a function of jWqj. We see an exponential escala-
tion of the number on Uniform and Census, which explains
the drastic explosion of the query cost on those data sets.
Interesting is that the number of false hits fluctuates6 a little
on Skew, which explains the fluctuation in the cost of IR2-
tree in Fig. 6b.

Next, we move on to study the other query parameter k
(the number of neighbors returned). The experiments for
this purpose are based on queries with jWqj ¼ 3. As before,
the average query time of each method in handling a work-
load is reported. Figs. 8a, 8b, and 8c give the results on Uni-
form, Skew, and Census, respectively. Once again, the costs of
IR2-tree are separated into tables. In these experiments, the
best approach is still either SI-m or SI-b. As expected, the

cost of SI-m is not affected by k, while those of the other sol-
utions all increase monotonically. The relative superiority
of alternative methods, in general, is similar to that exhib-
ited in Fig. 6. Perhaps worth pointing out is that, for all dis-
tributions, distance browsing appears to be the most
efficient approach when k is small.

Results on space consumption. We will complete our
experiments by reporting the space cost of each method on
each data set. While four methods are examined in the
experiments on query time, there are only three as far as
space is concerned. Remember that SI-m and SI-b actually
deploy the same SI-index and hence, have the same space
cost. In the following, we will refer to them collectively as
SI-index.

Fig. 9 gives the space consumption of IR2-tree, SI-index,
and IFR on data sets Uniform, Skew, and Census, respec-
tively. As expected, IFR incurs prohibitively large space
cost, because it needs to duplicate the coordinates of a data
point p as many times as the number of distinct words in
the text description of p. As for the other methods, IR2-tree
appears to be slightly more space efficient, although such
an advantage does not justify its expensive query time, as
shown in the earlier experiments.

Summary. The SI-index, accompanied by the proposed
query algorithms, has presented itself as an excellent trade-
off between space and query efficiency. Compared to IFR, it
consumes significantly less space, and yet, answers queries

6. Such fluctuation is not a surprise because, as discussed in Sec-
tion 3.1, the number of false hits is determined by two factors that may
cancel each other: (i) how many data points are closer than the kth NN
reported, and (ii) the false hit probability. While the former factor
increases with the growth of jWqj, the latter actually decreases.

(a) (b) (c)

Fig. 8. Query time versus the number of k of neighbors returned: (a) data set Uniform, (b) Skew, (c) Census. The number jWqj of query keywords is 3.

Fig. 9. Comparison of space consumption.

TAO AND SHENG: FAST NEAREST NEIGHBOR SEARCH WITH KEYWORDS 887

much faster. Compared to IR2-tree, its superiority is over-
whelming since its query time is typically lower by a factor
of orders of magnitude.

8 CONCLUSIONS

We have seen plenty of applications calling for a search
engine that is able to efficiently support novel forms of
spatial queries that are integrated with keyword search.
The existing solutions to such queries either incur pro-
hibitive space consumption or are unable to give real
time answers. In this paper, we have remedied the situa-
tion by developing an access method called the spatial
inverted index (SI-index). Not only that the SI-index is
fairly space economical, but also it has the ability to per-
form keyword-augmented nearest neighbor search in
time that is at the order of dozens of milli-seconds. Fur-
thermore, as the SI-index is based on the conventional
technology of inverted index, it is readily incorporable in
a commercial search engine that applies massive parallel-
ism, implying its immediate industrial merits.

ACKNOWLEDGMENTS

This work was supported in part by (i) projects GRF 4166/
10, 4165/11, and 4164/12 from HKRGC, and (ii) the WCU
(World Class University) program under the National
Research Foundation of Korea, and funded by the Ministry
of Education, Science and Technology of Korea (Project No:
R31-30007).

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A System for
Keyword-Based Search over Relational Databases,” Proc. Int’l
Conf. Data Eng. (ICDE), pp. 5-16, 2002.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R	-
tree: An Efficient and Robust Access Method for Points and Rec-
tangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 322-331, 1990.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.
Sudarshan, “Keyword Searching and Browsing in Databases
Using Banks,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 431-440,
2002.

[4] X. Cao, L. Chen, G. Cong, C.S. Jensen, Q. Qu, A. Skovsgaard, D.
Wu, and M.L. Yiu, “Spatial Keyword Querying,” Proc. 31st Int’l
Conf. Conceptual Modeling (ER), pp. 16-29, 2012.

[5] X. Cao, G. Cong, and C.S. Jensen, “Retrieving Top-k Prestige-
Based Relevant Spatial Web Objects,” Proc. VLDB Endowment,
vol. 3, no. 1, pp. 373-384, 2010.

[6] X. Cao, G. Cong, C.S. Jensen, and B.C. Ooi, “Collective Spatial
Keyword Querying,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 373-384, 2011.

[7] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier Fil-
ter: An Efficient Data Structure for Static Support Lookup Tables,”
Proc. Ann. ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 30-
39, 2004.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Process-
ing in Geographic Web Search Engines,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 277-288, 2006.

[9] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton, “Combining
Keyword Search and Forms for Ad Hoc Querying of Databases,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, 2009.

[10] G. Cong, C.S. Jensen, and D. Wu, “Efficient Retrieval of the Top-k
Most Relevant Spatial Web Objects,” PVLDB, vol. 2, no. 1, pp. 337-
348, 2009.

[11] C. Faloutsos and S. Christodoulakis, “Signature Files: An Access
Method for Documents and Its Analytical Performance Eval-
uation,” ACM Trans. Information Systems, vol. 2, no. 4, pp. 267-288,
1984.

[12] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on Spatial
Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 656-665, 2008.

[13] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing Spatial-
Keyword (SK) Queries in Geographic Information Retrieval (GIR)
Systems,” Proc. Scientific and Statistical Database Management
(SSDBM), 2007.

[14] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial Data-
bases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-318,
1999.

[15] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword Search
in Relational Databases,” Proc. Very Large Data Bases (VLDB),
pp. 670-681, 2002.

[16] I. Kamel and C. Faloutsos, “Hilbert R-Tree: An Improved R-Tree
Using Fractals,” Proc. Very Large Data Bases (VLDB), pp. 500-509,
1994.

[17] J. Lu, Y. Lu, and G. Cong, “Reverse Spatial and Textual k Nearest
Neighbor Search,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 349-360, 2011.

[18] S. Stiassny, “Mathematical Analysis of Various Superimposed
Coding Methods,” Am. Doc., vol. 11, no. 2, pp. 155-169, 1960.

[19] J.S. Vitter, “Algorithms and Data Structures for External Memo-
ry,” Foundation and Trends in Theoretical Computer Science, vol. 2,
no. 4, pp. 305-474, 2006.

[20] D. Zhang, Y.M. Chee, A. Mondal, A.K.H. Tung, and M. Kit-
suregawa, “Keyword Search in Spatial Databases: Towards
Searching by Document,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 688-699, 2009.

[21] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma, “Hybrid Index
Structures for Location-Based Web Search,” Proc. Conf. Information
and Knowledge Management (CIKM), pp. 155-162, 2005.

Yufei Tao is currently a full professor at the Chi-
nese University of Hong Kong. He also holds a
visiting professor position, under the World Class
University (WCU) program of the Korean govern-
ment, at the Korea Advanced Institute of Science
and Technology (KAIST). He is an associate edi-
tor of the ACM Transactions on Database Sys-
tems (TODS), and of the IEEE Transactions on
Knowledge and Data Engineering (TKDE). He is/
was a PC co-chair of ICDE 2014, a PC co-chair
of SSTD 2011, an area PC chair of ICDE 2011,

and a senior PC member of CIKM 2010, 2011, and 2012.

Cheng Sheng received the PhD degree in com-
puter science from the Chinese University of
Hong Kong in 2012 and the BSc degree in com-
puter science from Fudan University in 2008. He
is currently a software engineer at Google Swit-
zerland. His research focuses on algorithms in
database systems with nontrivial theoretical
guarantees.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 4, APRIL 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

