popular contents as its storage allows. This approach
amounts to noncooperation and can give rise to heavy
network-wide content duplications. In the other extreme
case, which is fully cooperative, a node would try to
maximize the total number of unique contents stored within
the SWNET by avoiding duplications. In this paper, we
show that none of the above extreme approaches can
minimize the content provider’s cost. We also show that
for a given rebate-to-download-cost ratio, there exists an
object placement policy which is somewhere in between
those two extremes, and can minimize the content provi-
der’s cost by striking a balance between the greediness and
full cooperation [26].

This is referred to as optimal object placement policy in the
rest of this paper. The proposed cooperative caching
algorithms strive to attain this optimal object placement with
the target of minimizing the network-wide content provi-
sioning cost.

1.3 User Selfishness

The potential for earning peer-to-peer rebate may promote
selfish behavior in some users. A selfish user is one that
deviates from the network-wide optimal policy in order to
earn more rebates. Any deviation from the optimal policy is
expected to incur higher network-wide provisioning cost. In
this work, we analyze the impacts of such selfish behavior
on object provisioning cost and the earned rebate within the
context of an SWNET. It is shown that beyond a threshold
selfish node population, the amount of per-node rebate for
the selfish users is lower than that for the nonselfish users.
In other words, when the selfish node population is beyond
a critical point, selfish behavior ceases to produce more
benefit from a rebate standpoint.

1.4 Contributions

First, based on a practical service and pricing case, a
stochastic model for the content provider’s cost computation
is developed. Second, a cooperative caching strategy, Split
Cache, is proposed, numerically analyzed, and theoretically
proven to provide optimal object placement for networks
with homogenous content demands. Third, a benefit-based
strategy, Distributed Benefit, is proposed to minimize the
provisioning cost in heterogeneous networks consisting of
nodes with different content request rates and patterns.
Fourth, the impacts of user selfishness on object provision-
ing cost and earned rebate is analyzed. Finally, numerical
results for both strategies are validated using simulation
and compared with a series of traditional caching policies.

2 NETWORK, SERVICE, AND PRICING MODEL

2.1 Network Model

Fig. 1 illustrates an example SWNET within a University
campus. End Consumers carrying mobile devices form
SWNET partitions, which can be either multi-hop (i.e.,
MANET) as shown for partitions 1, 3, and 4, or single hop
access point based as shown for partition 2. A mobile device
can download an object (i.e., content) from the CP’s server
using the CSP’s cellular network, or from its local SWNET
partition. In the rest of this paper, the terms object and
content are used synonymously.

We consider two types of SWNETs. The first one involves
stationary [1] SWNET partitions. Meaning, after a partition

CP’s Server

CSP’s
Cellular

SWNET Partiion-1  SWNET Partition-2
University Campus

Fig. 1. Content access from an SWNET in a University Campus.

is formed, it is maintained for sufficiently long so that the
cooperative object caches can be formed and reach steady
states. We also investigate a second type to explore as to
what happens when the stationary assumption is relaxed.
To investigate this effect, caching is applied to SWNETs
formed using human interaction traces obtained from a set
of real SWNET nodes [2].

2.2 Search Model

After an object request is originated by a mobile device, it
first searches its local cache. If the local search fails, it
searches the object within its SWNET partition using limited
broadcast message. If the search in partition also fails, the
object is downloaded from the CP’s server using the CSP’s
3G/4G cellular network. In this paper, we have modeled
objects such as electronic books, music, etc., which are time
nonvarying, and therefore cache consistency is not a critical
issue. We first assume that all objects have the same size
and each node is able to store up to “C” different objects in
its cache. Later, in Section 5.3, we relax this assumption to
support objects with varying size. We also assume that all
objects are popularity-tagged by the CP’s server [3]. The
popularity-tag of an object indicates its global popularity; it
also indicates the probability that an arbitrary request in the
network is generated for this specific object.

2.3 Pricing Model
We use a pricing model similar to the Amazon Kindle
business model in which the CP (e.g., Amazon) pays a
download cost C; to the CSP when an End-Consumer
downloads an object from the CP’s server through the CSP’s
cellular network. Also, whenever an EC provides a locally
cached object to another EC within its local SWNET
partition, the provider EC is paid a rebate C, by the CP.
Optionally, this rebate can also be distributed among the
provider EC and the ECs of all the intermediate mobile
devices that take part in content forwarding. Fig. 2
demonstrates the cost and content flow model. As it is
shown in Fig. 2, C;; corresponds to the CP’s object delivering
cost when it is delivered through the CSP’s network, and C,
corresponds to the rebate given out to an EC when the
object is found within the SWNET (e.g., node A receives
rebate C, after it provides a content to node B over the
SWNET). For a given C,/C; ratio, the paper aims to develop
optimal object placement policies that can minimize the
network-wide content provisioning cost.

Note that these cost items, namely, C; and C,, do not
represent the selling price of an object (e.g., e-book). The
selling price is directly paid to the CP (e.g., Amazon) by an



CP pays C,to CSP
ECg RS

N,

L N\ 4
E _ |content & =
T Communication

Content

Service Provider
(CSP)

'
( _________________ f’
E CP pays B.C, (i.e. C,) to node
EC, EC, for providing content to ECg
= Content Flow

Content Provider (CP)

\~_

= => Payment Flow

Fig. 2. Content and cost flow model.

EC (e.g., a Kindle user) through an out-of-band secure
payment system.

A digitally signed rebate framework needs to be
supported so that the rebate recipient ECs can electro-
nically validate and redeem the rebate with the CP. Also, a
digital usage right mechanism [4] is needed so that an EC
which is caching an object (e.g., an e-book) should not
necessarily be able to open/read it unless it has explicitly
bought the object from the CP. We assume the presence of
these two mechanisms on which the proposed caching
mechanism is built.

Operationally, the parameters C; and C, are set by a CP
and CSP based on their operating cost and revenue models.
The end-consumers do not have any control on those
parameters.

2.4 Request Generation Model

We study two request generation models, namely, homo-
genous and heterogeneous. In the homogenous case, all mobile
devices maintain the same content request rate and pattern
which follow a Zipf distribution. Zipf distribution is widely
used in the literature for modeling popularity based online
object request distributions [5]. According to Zipf law, the
popularity of the ith popular object out of N different
objects can be expressed as

Q 1
0=

PR
T

The parameter o (0 < a < 1) is a Zipf parameter that
determines the skewness in a request pattern. The quantity
p; indicates the probability that an arbitrary request is for
the ith popular object (p; > p2 > -+ > pn). As «a increases,
the access pattern becomes more concentrated on the
popular data items.

In the heterogeneous request model, each mobile device
follows an individual Zipf distribution. This means popu-
larity of object j is not necessarily the same from two
different nodes standpoints. This is in contrast to the
homogenous model in which the popularity of object j is
same from the perspective of all network nodes. Also, the
object request rate from different nodes is not necessarily
the same in the heterogeneous model.

pi = 0<a<l). (1)

3 Cost UNDER HOMOGENEOUS REQUEST MODEL

In this section, we compute the average object provisioning
cost under a homogenous request model. Let P, be the
probability of finding a requested object in the local cache
(i.e., local hit rate), Py, be the probability that a requested
object can be found in the local SWNET partition (i.e., remote

hit rate) after its local search fails, and P be the probability
that a requested object is not found in the local cache and in
the remote cache (i.e., miss rate). We can write Pj; in terms
of Py and Pj, as

Py=1-P, - Py. (2)

According to the pricing model in Section 2.3, the
provisioning cost for an object is zero if it is found in the
local cache, C, when it is found in the SWNET, and C; when
it is downloaded from the CP’s server through the CSP’s
network. Thus, the average content provisioning cost

Cost = PyC, + Py C,. (3)

Expressing C./C, as § and substituting Py, from (2), cost
can be expressed as

Cost = (1 — (1 — ﬂ)PV — PL)CO{. (4)

Let m be the number of devices within an SWNET
partition, and S; be the set of objects stored in device-
j(1<j<m). With p;(1 <i<N) as defined in (1), the
probability of finding an object in device-j’s cache can be
written as P} = >_ics; pi- The resulting probability of
finding the object at any given device in the partition is
i Pl/mor 330 37 s, Pi/m (recall that the request rate
of all nodes is the same). This is the average local hit rate
Pr, and can be simplified as

1<
Pr=—>% n;p, (5)
m

where n; represents the number of copies of object-i within
the partition. If C is the available cache size (i.e., the number
of objects that can be stored) at each mobile device, then the
maximum number of objects that can be stored within an
SWNET partition is mC. Thus, parameter N in (5) can be
replaced by mC.

Let S represent the set of all stored objects in a partition.
The probability of finding an object in the partition can be
expressed as >, spi. The quantity ) . ¢p; represents the
overall cache hit rate in the partition which is equal to
1 — Py. Substituting > . ¢ p; for 1 — Py, and the value of Pp,
from (5) in (2), we can write Py =3, ¢pi — %Z:’fl nip;.
Using (4), the cost expression can be written as (1 — (1 — 3)
(Ciespi — L3 nips) — L 3°7 nip;)Cy, and can be simpli-
fied as

mC
Cost = (1 (=8> pi- f’%znm> Ci (6)
=

ieS

4 OPTIMAL OBJECT PLACEMENT

For a given 3, the cost in (6) is a function of the vector
n = <ni,ny,...,nny>, where n;, shows the number of copies
of object “i” in the SWNET partition in question. An object
placement 7 is optimal when it leads to minimum object
provisioning cost in (6). In this section, we aim to determine
the optimal 7.

Lemma 1. With any popularity-based object request model
(e.g., Zipf), the optimal placement approach must ensure the
following constraint at steady state.



An object should not be stored in a partition when at
least one object of higher popularity is missing in that
partition. That is, object ¢ (i.e., ith popular object) cannot be
cached while a higher popularity object k (k < ) is missing.
This is referred to as popularity storage constraint.

Proof. Let us assume that there is an optimal placement
which minimizes the object provisioning cost in (6) and
violates the popularity storage constraint. It means there is
a missing object “i” in the SWNET (i.e., n; = 0) while a

78974

less popular object “;j” is present (i.e., j > i,n; >0). 0O

Using (6), it can be shown that if a less popular object “;”
is replaced with the missing object “¢,” the cost will be
lower. This contradicts the assumption and therefore, the
optimal object placement must preserve the popularity
storage constraint.

Now let us assume that “T"” is the least popular object in
the optimal solution. According to the popularity storage
constraint, there is at least one copy of objects “1” to “T"” in
the partition. Therefore, (6) can be written as

T 1 T
> opi —ﬁm;nmz)ai- (7)

=1

Lemma 2. In the optimal object placement, an object k (i.e., kth
popular object) should not be duplicated unless all other objects
with higher popularity have been duplicated in all nodes.

Cost = <1— (1-0)

Proof. According to the storage popularity constraint in the
optimal solution, at least one copy of object “1” to object
“T” exists. Since object “T" is the least popular object in
the optimal solution, (7) can be rewritten as O

T

Costzle(lfﬁf—)pzf—Z

i=1

Now, let ny #ny, 1 <mng,ni <m, and ¢ < k. It can be
observed that by increasing n, and by reducing ny it is
possible to lower the cost. This can lead to the following
claim: while there is room for increasing the number of
copies of object ¢ (i.e., ny < m), less popular objects (e.g.,
object k, k> 1 should not be duplicated. Following the
above logic, we cannot duplicate object “2” unless we have
duplicated object “1” in all nodes (i.e., n; = m). Similarly,
we cannot duplicate objet “i” unless we have already
duplicated more popular objects in all nodes.

Claim. The optimal object placement 77 has the following

properties:

1. nj=m for1l<i</{ where /¢ is the least popular
duplicated object in the network, and its value
should be determined based on 3. One copy of
objects 1--- ¢ will be stored in all nodes.

2. ni=1forl+1<i<T, where T=NC—N{+1]+
1. This means the remaining space of caches is filled
with unique objects.

3. n; =0 fori>T.

Proof. According to Lemma 1, There must be at least one
copy of objects 1---T in the network (i.e., there is no
missing object). Lemma 2 states that an object should not

Cache Space (C)
Duplicate Unique
—A.C (1-A).C

Fig. 3. Cache partitioning in split cache policy.

duplicated before all other objects with higher popu-
larity have been duplicated in all nodes. This means if ¢
is the least duplicated popular object in the network,
there should be m number of copies of objects 1...¢ in
the network. O

Note that the above analysis does not help deciding the
value of ¢, or the set of objects that need to be duplicated for
the optimal object placement solution. It only shows that if
the optimal solution requires duplication, it must be across
all nodes. In the next section, we show how to determine the
value of £.

5 CACHING FOR OPTIMAL OBJECT PLACEMENT

5.1 Split Cache Replacement

To realize the optimal object placement under homoge-
neous object request model we propose the following Split
Cache policy in which the available cache space in each
device is divided into a duplicate segment (A fraction) and a
unique segment (see Fig. 3). In the first segment, nodes can
store the most popular objects without worrying about the
object duplication and in the second segment only unique
objects are allowed to be stored. The parameter A in Fig. 3
(0 < X <1) indicates the fraction of cache that is used for
storing duplicated objects.

With the Split Cache replacement policy, soon after an
object is downloaded from the CP’s server, it is categorized
as a unique object as there is only one copy of this object in
the network. Also, when a node downloads an object from
another SWNET node, that object is categorized as a
duplicated object as there are now at least two copies of that
object in the network.

For storing a new unique object, the least popular object in
the whole cache is selected as a candidate and it is replaced
with the new object if it is less popular than the new
incoming object. For a duplicated object, however, the evictee
candidate is selected only from the first duplicate segment
of the cache. In other words, a unique object is never evicted
in order to accommodate a duplicated object. The Split Cache
object replacement mechanism realizes the optimal strategy
established in Section 4. With this mechanism, at steady
state all devices’ caches maintain the same object set in their
duplicate areas, but distinct objects in their unique areas.
The pseudocode of Split Cache replacement policy is shown
in Algorithm 1.

INPUT: Object Onew
IF ( Onew is downloaded from another node )

O,in = the least popular obj in the duplicate area
ELSE

Opmin = The least popualar obj in the entire cache
END

IF ( O,; . popularity > O,,;,. popularity)
replace 0,,;, l ith O,
Algorithm 1: Split Cache object replacement policy




5.2 Object Provisioning Cost with Split Cache

To compute the provisioning cost for Split Cache we need to
compute P, and Py used in (4). We first define function f(k)
to be the probability of finding an arbitrary object within a
device’s cache that is filled with the k most popular objects.
This function can be expressed as Y"_, p;. Substituting p;
for the Zipf distribution (see Section 2), we can write

ZPL

Similarly, 0= 1/ Zi:l 7% ~ 1/ jll‘ L}‘ di = rv()Y,1 .
f(k) can be simplified as

k=) —1
l—a

—dz Q

Therefore,

E=e) 1
F®) = o —1- (®)

Local hit rate Pr. At steady state, total number of unique
objects stored in the partition is equal to mC(1 — \), where
m is the number of mobile devices. Also, number of
duplicated objects is equal to AC. Therefore, the total
number of different objects stored in the partition is
AC +mC(1 — X). Probability that a device can find a new
requested object in its local cache is equal to

H,
P, =Hp+ l (9)

where Hp = f(AC) corresponds to the cache hits contrib-
uted by the objects stored in the duplicate area of cache
and Hy = fl[(A+m(1—X))C] — f(AC) represents the hit
rate contributed by all unique objects (in the partition)
which are assumed to be uniformly distributed over all m
devices” caches.

Remote hit rate Py. It is equal to the hit probability
contributed by the objects stored in the unique area of all
devices in the partition, minus the unique area of the local
cache. This can be expressed as

m—1

Py = Hy. (10)
Substituting P;, and Py from (9) and (10) in (4), the

expression of cost can be simplified as

B)m +

Cost = (1 (=

Using (8) to expand Hy and Hp, (11) can be written as a
function of M. By equating the derivative of the cost
expression to zero, we can compute the ), at which cost
is minimized.

)HU - HD>Cd. (11)

5.3 Handling Objects with Different Size

So far we assumed that all objects have the same size. In
this section, the minimum-cost object replacement mechan-
ism is extended for scenarios in which objects can have
different sizes. In such situations, in order to insert a new
downloaded object “i” from the CP’s server, instead of
finding the least popular object, a node needs to identify a
set of objects v in the cache. The set v should be identified
such that the quantity >, p; is minimized while
Y jewpi <pi and >y x; > z;; the quantity z; shows the

size of object “i.” This is a traditional knapsack problem for

which a number of heuristics-based solutions are available
in the literature. If a set 1), satisfying the above conditions,
is found, then all objects in that set are evicted from the
cache to accommodate the new incoming object; otherwise
the incoming object “i” is not admitted. When an object is
downloaded from another node in the SWNET, the
members of ¢ can be selected only from the objects stored
in the duplicate area of the cache. Note that dimensioning
of the split factor A with varying object size is not
addressed in this paper.

6 CACHING UNDER HETEROGENEOUS REQUESTS

The Split Cache policy in Section 5 may not able to minimize
the provisioning cost for nonhomogenous object requests
where nodes have different request rates and request
patterns. In this section, we propose and analyze a benefit-
based heuristics approach to minimize the object provision-
ing cost in a network with nonhomogenous request model.

The probability that a node “i” finds the requested object
in its own cache is Y jes: v, Where s; indicates the set of
stored object in node “¢” and p! shows the probability that a
generated request in node “i” is for object “j.” The
probability that a request is found in the network after its
local search fails is equal to > je(S=s:) p], where § represents
the set of all objects stored in the network. Finally, the
probability that an object is not available in the network and

needs to be downloaded from the CP’s serveris 1 — . ¢ pf .
Therefore, the average provision cost for node “i” can be
expressed as
Cost; = ( Z p1+<1—zpz>> (12)
je(S=5) j€S

Average provision cost across all nodes can be calculated as

D micost;
Cost = 72) o | .
— (71— > Hi Z]ESpj Z Hi Zje&&ﬁf C (13)
Z 122 27 125 @

// ”

where p; shows the request generation rate in node

6.1 Benefits of Caching

Suppose @ is the set of nodes that store a copy of object “j
in their cache. Let y; be the object request rate for node “i”
and p! be the probability that a generated request 1n_
node “i” is for object (i.e., node “i” generates u;p!
requests for object “;” per unit time). The cost of network
usage for downloadmg an object directly from CP’s server
is C,;. Therefore, storing object “j” reduces cost at node
by the amount p;p/Cy per unit tlme This reflects the beneﬁt
of storing object “;” in node “i.” Thus, the benefit of storing
object “j” in the set of nodes speciﬁed by @ can be written
as ZWEQ sz{Cd

Additionally, every other node in an SWNET partition
(i.e., nodes that do not store object “;” locally) is able to
download object “j” from one of nodes in @ with cost 8C,.
This reduces the cost of providing object “j” to any other
node in the network by the amount (1 B)C’d for each
request for object “j.” Total number of requests for object

1/ -

// ”



“j” by the other nodes in the SWNET is equal to } S0 nye
Therefore, the remote benefit of storing a unique object “;” in
the network is equal to (1—3)CiY g0 uipy- The total
benefit (the overall amount of cost reduction) of storing a

“j” in set of nodes specified by “Q” can be written as

object "'j
Z wiplCa+ (1 = B)Cy Z (1P}
VieQ VkgQ

This can be rewritten as

(1- B)CdZMkp;i + Z ﬂumﬁCd.
VE

VieQ

(14)

The first term of (14) refers to the global benefit of storing
object “;” in the network. Note that global benefit of storing
an object in the network does not depend on the location
and the number of copies of that object. The global benefit
of objects (1...N) be represented by a vector U where

U= (1-B)Ca ) up). (15)
vk

The second term of (14) shows the local benefits of storing
object “j” in set of nodes specified by Q. The local benefit of
storing object (1...N) in nodes (1...m) can be represented
by a matrix D,,«y where

Dyj = BuiplCa.

Using the above notations, the tofal benefit of storing
“j” in a set of nodes specified by “Q” can be written as

object “j
Ui+ Dy
ke@

(16)

6.2 Benefit-Based Distributed Caching Heuristics

With the Distributed Benefit-based caching strategy pre-
sented in this section, when there is not enough space in the
cache for accommodating a new object, the existing object
with the minimum benefit is identified and replaced with
the new object only if the new object shows more total
benefit. The benefit of a newly downloaded object is
calculated based on its source. When a new object “j” is
downloaded by node i directly from the CP’s server using
the CSP’s 3G/4G connection (i.e., no other copy of the object
is present in the SWNET partition), the copy is labeled as
primary and its benefit is equal to U; + D;;.

When the object is downloaded from another node in the
SWNET partition (i.e., at least one more copy of the object
already exists in the partition), the copy is labeled as
secondary and its benefit is equal to D;;. The new object is
cached if its benefit is higher than that of any existing
cached object.

In addition to the benefit-based object replacement logic
as presented above, provisioning cost minimization re-
quires that a primary object within an SWNET partition
should be cached in the node that is most likely to generate
requests for that object. In other words, a primary object j in
the partition must be stored in node i such that
wip! > pypy, for all k # 4.

To satisfy the above constraint, the primary copy of an

object “j” must always be stored in a node with the highest

request generation rate for that object. To enforce this, in
addition to the object-ID, a node sends its estimated request
generation rate for the requested-object during the search
process within SWNET. Upon receiving the search request,
an object holder compares its own request rate for the object
with that of the requesting node. If the request rate of the
requesting node is higher and the object copy is a primary
copy, then the object provider sends the object along with a
change_status flag to the requesting node. This flag informs
the requesting node that the object must be considered as a
primary copy. Upon receiving of the object and the
change_status flag, the requesting node considers the object
as a primary copy and if it can find an object with lower
benefit or if it has an empty slot, it stores the new object in
its cache. After storing it, the requesting node sends another
change_status message to the provider node which causes
the provider node labels its object as a secondary copy. The
complete logic of the Distributed Benefit heuristics is
summarized in Algorithm 2.

INPUT: O,
flag
IF ( O; is downloaded from Internet || flag == True)
0;. benefit = U; + Dy
0;.label = Primary
ELSE
Oj benefit = D”
0;.label = lecondary
END
Opmin = Object 1 ith minimum benef it
IF (0;. benefit > Ouyin. benefit)
replace Oy, 1 ith O;
send change status message to the provider node
END

Algorithm-2: A distributed heuristic for object placement in
SWNETs with heterogeneous content requests in node ‘i’

Note that in certain rare situations the object status
modification process fails to satisfy the above constraint. For
example, consider a situation in which only one node in the
network generates requests and other nodes make no
requests. In this case, due to storage limitations, the active
node can only store a limited number of objects. The object
status modification process does not help the active node to
offload some objects to the other nodes in the network.
Offloading objects to other caches needs extra protocol
syntax and requires additional complexity and overhead in
the algorithm and it’s beyond the scope of our current work.
Object status modification process also fails to work perfectly
in highly mobile situations. For example, two nodes may
consider an object as primary copy while they are in the same
SWNET partition. This may result in storing additional
number of copies of some objects. Due to these incon-
sistencies Distributed Benefit heuristics does not guarantee a
cost-optimal object placement.

6.3 Performance Upper Bound: Optimal Object
Placement

In this section, we introduce a centralized mechanism in

order to find the optimal object placement. First, we map

the object placement task to a maximum weight matching

problem in a bipartite graph. Then, we formulate an

integer linear objective function to find the maximum



Fig. 4. An object placement problem as bipartite graph.

weight matching, and we show that the linear program-
ming relaxation of this problem in fact provides the
optimal solution.

In a maximum weight bipartite matching problem, for a
given bipartite graph G = (V, E) with bipartition (A, B) and
weight function w:FE — IR, the objective is to find a
matching of maximum weight where the weight of
matching M is given by w(M) =3 .,, w(e). Without loss
of generality, it can be assumed that G is a complete
weighted bipartite graph (zero weight edges can be added
as necessary); it can be also assumed that G is balanced, i.e.,
|A| = |B| = 57, as we can add dummy vertices as necessary.

6.3.1 Optimal Object Placement as a Matching Problem

To map the object placement problem to a maximum weight
bipartite matching, nodes are modeled by vertices n; ...n,,
in partition A, and objects are modeled as vertices in
partition B. Initially, we assume that each node is able to
store only one object (i.e., cache size is equal to 1) and later
we relax this assumption.

In object placement, we may put one object in multiple
nodes therefore every object must be modeled by m vertices.
For example, for object “j” we create vertices Oy;...Op; in
partition B A vertex O;; then is connected to the vertex n;
with the weight of D;; which shows the local benefit of
storing object “j” in node “i.” We also add vertices
Zij ... Zy—1; in partition A and connect vertices Oy;... O
to them using the edges with weight zero. These new

70

vertices are added to model the situation when object “;” is
not stored in that node. When there is no copy of object “;”
in the network the global benefit of object “;” is lost. To model
this situation, vertex G; is added in partition A and it is
connected with vertices O,;...0,,; using the edges with
weight —U;. Note that there is only m — 1 edges with weight
zero and therefore, in perfect matching at least one edge
with weight of —U; must be selected when object “j” is not
stored in any node. The above process is repeated for all
objects in the network. Also for every slot of cache space a
vertex must be created in partition A and the whole process
of mapping must be repeated again. Fig. 4 shows a modeled
object placement problem when m =2, N =2, and C' = 1.
To make sure all weights are positive, a large enough
constant A is added to all weights. By adding dummy
vertices and edges with weight 0, the graph becomes a

complete bipartite graph.

6.3.2 Maximum Weight Matching

For the resulting complete bipartite graph, we can for-
mulate maximum weight perfect matching as an Integer Linear
Programming (ILP) problem as follows:

Max Z WijTij.
v(i.j)

Subject to

I forie A:) ; zjj=1

2. fOT’jEBZZi .C(L‘Uil

3. (L'ijE{O,l}Z.G.A,jGB,
where z;; =1 if (i,j) € matching M and 0 otherwise. We
can relax the integrality constraints by replacing con-
straint 3 with

l’”ZOZEA,]eB

This gives linear programming relaxation of the above
integer program. In a linear program, the variable can take
fractional values and therefore there are many feasible
solutions to the set of constraints above which do not
corresponds to matching. This set of feasible solution forms
a polytope, and when we optimize a linear constraint over a
polytope, the optimum will be attained [27] at one of the
“corners” or extreme points of the polytope.

In general, the extreme points of a linear program are not
guaranteed to have all coordinates integral. In other words,
in general there is no guarantee that the solution for linear
programming relaxation and the original integer program
are the same. However, for matching problem we notice
that the constraint matrix of linear program is totally
unimodular and therefore any extreme point of the polytope
defined by the constraints in linear program is integral [27].
Moreover, if an optimum solution to a linear programming
relaxation is integral, then it must also be an optimum
solution to the integer program [18]. Therefore, the solution
found by linear programming is optimal for the maximum
weight bipartite matching problem to which our object
placement problem is mapped into.

The maximum weight matching M represents the optimal
object placement which minimizes provisioning cost in (13).
The optimum result of the linear program can be treated as
the upper bound of cooperative caching performance. Such
upper bounds are reported in the experimental results in
Section 10.

The maximum weight perfect matching can be also found by
Hungarian method (also known as Kuhn-Munkres algo-
rithm) in polynomial time [18], [19]. In the literature, there
are many other algorithms for finding the maximum weight
perfect matching.

7 USER SELFISHNESS AND ITS IMPACTS

In Section 5, we computed the cost and rebate in a
cooperative SWNET with homogeneous requests where all
nodes run the split replacement policy with optimal A. The
impacts of user selfishness on object provisioning cost are
analyzed in this section. Note that the following study is
limited only for homogenous content requests and it







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


