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T he cloud computing paradigm has achieved 
widespread adoption in recent years. Its 
success is due largely to customers’ ability 

to use services on demand with a pay-as-you go 
pricing model, which has proved convenient in 
many respects. Low costs and high flexibility 
make migrating to the cloud compelling. Despite 
its obvious advantages, however, many com-
panies hesitate to “move to the cloud,” mainly 
because of concerns related to service availabil-
ity, data lock-in, and legal uncertainties.1 Lock-
in is particularly problematic. For one thing, 
even though public cloud availability is gener-
ally high, outages still occur.2 Businesses locked 
into such a cloud are essentially at a standstill 
until the cloud is back online. Moreover, public 
cloud providers generally don’t guarantee par-
ticular service level agreements (SLAs)3 — that is, 
businesses locked into a cloud have no guaran-
tees that it will continue to provide the required 
quality of service (QoS). Finally, most public 
cloud providers’ terms of service let that provider 
unilaterally change pricing at any time. Hence, a 
business locked into a cloud has no mid- or long-
term control over its own IT costs.

At the core of all these problems, we can 
identify a need for businesses to permanently 
monitor the cloud they’re using and be able to 
rapidly “change horses” — that is, migrate to a 
different cloud if they discover problems or if 
their estimates predict future issues. However, 
migration is currently far from trivial. Myriad cloud  

providers are f looding the market with a 
confusing body of services, including compute 
services such as the Amazon Elastic Compute Cloud 
(EC2) and VMware vCloud, or key-value stores, 
such as the Amazon Simple Storage Service  
(S3). Some of these services are conceptually 
comparable to each other, whereas others are 
vastly different, but they’re all, ultimately, 
technica l ly incompat ible and fol low no 
standards but their own. To further complicate 
the situation, many companies not (only) build 
on public clouds for their cloud computing 
needs, but combine public offerings with their 
own private clouds, leading to so-called hybrid 
cloud setups.4

Here, we introduce the concept of a meta cloud 
that incorporates design time and runtime com-
ponents. This meta cloud would abstract away 
from existing offerings’ technical incompat-
ibilities, thus mitigating vendor lock-in. It helps 
users find the right set of cloud services for a 
particular use case and supports an application’s 
initial deployment and runtime migration.

Cloud Computing Use Case
Let’s consider a Web-based sports portal for 
an event such as the Olympic Games, which 
allows users to place bets. An event this 
large requires an enormously efficient and 
reliable infrastructure, and the cloud computing 
paradigm provides the necessary f lexibility 
and elast icit y for such a scenar io. It lets 
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service providers handle short-term 
usage spikes without needing res- 
pective dedicated resources available 
continuously. The problem, however, 
is that once an application has been 
developed based on one particular 
provider’s cloud services and using 
its specific API, that application is 
bound to that provider; deploying 
it on another cloud would usually 
require completely redesigning and 
rewriting it. Such vendor lock-in 
leads to strong dependence on the 
cloud service operator. In the sports 
portal example, in addition to the 
ability to scale applications up and 
down by dynamically allocating and 
releasing resources, we must consider 
additional aspects, such as resource 
costs and regional communication 
bandwidth and latency.

Let’s assume the sports betting 
portal application is based on a  
load balancer that forwards HTTP 
requests to numerous computing 
nodes hosting a Web application 
that lets users submit a bet. Request 
handlers place bet records in a 
message queue and subsequently 
store them in a relational database. 
Let’s fur ther assume a service 
provider realizes this scenario using 
only Amazon Web Services (AWS), 
EC2 to host applications, Simple 
Queue Service (SQS) as its cloud 
message queue, and the Relational 
Database Service (RDS) as a database 
system. Instead of being bound to 
one cloud operator, however, the 
betting application should be hosted 
in an optimal cloud environment.

To leverage a more diverse cloud 
landscape, support f lexibility, and 
avoid vendor lock-in, the meta cloud 
must achieve two main goals:

•	 find the optimal combination of 
cloud services for a certain appli-
cation with regard to QoS for users 
and price for hosting; and

•	 develop a cloud-based application 
once, then run it anywhere, includ-
ing support for runtime migration.

Lately, the meta cloud idea has 
received some attention, and several 
approaches try to tackle at least parts 
of the problem.

Current Weather  
in the (Meta) Cloud
First, standardized programming APIs 
must enable developers to create 
cloud-neutral applications that aren’t 
hardwired to any single provider or 
cloud service. Cloud provider abstrac-
tion libraries such as libcloud (http://
libcloud.apache.org), fog (http://fog.
io), and jclouds (www.jclouds.org) 
provide unified APIs for accessing 
different vendors’ cloud products. 
Using these libraries, developers are 
relieved of technological vendor lock-
in because they can switch cloud 
providers for their applications with 
relatively low overhead.

As a second ingredient, the meta 
c loud uses resource templates 
to define concrete features that 
the application requires from the 
cloud. For instance, an applica-
tion must be able to specify that it 
requires a given number of com-
puting resources, Internet access, 
and database storage. Some current 
tools and initiatives — for example, 
Amazon’s CloudFormation (http://
aws.amazon.com/cloudformation/) 
or the upcoming TOSCA specification 
(www.oasis-open.org/committees/
tosca) — are working toward similar 
goals and can be adapted to provide 
these required features for the meta 
cloud.

In addition to resource templates, 
the automated formation and pro-
visioning of cloud applications also 
depends on sophisticated features to 
actually deploy and install applica-
tions automatically. Predictable and 
controlled application deployment is 
a central issue for cost-effective and 
efficient deployments in the cloud, 
and even more so for the meta cloud. 
Several application provisioning 
solutions exist, enabling developers 
and administrators to declaratively 

specify deployment artifacts and 
dependencies to allow for repeatable 
and managed resource provisioning. 
Notable examples include Opscode 
Chef (www.opscode.com/chef/ ), 
Puppet (http://puppetlabs.com), and 
juju (http://juju.ubuntu.com).

At runtime, an important aspect 
of the meta cloud is application 
monitoring, which enables the meta 
cloud to decide whether it’s nec-
essary to provision new instances 
of the application or migrate parts 
of it. Various vendors provide tools 
for cloud monitoring, ranging from  
system-level monitoring (such as CPU 
and bandwith) to application-level 
monitoring (Amazon’s CloudWatch; 
http://aws.amazon.com/cloudwatch/) 
to SLA monitoring (as with moni-
tis; http://portal.monitis.com/index.
php/cloud-monitoring). However, 
the meta c loud requ i res more 
sophisticated monitoring techniques 
and, in particular, approaches for 
making automated provisioning 
decisions at runtime based on cur-
rent application users’ context and 
location.

Inside the Meta Cloud
To some extent, we can realize the 
meta cloud based on a combination 
of existing tools and concepts, 
part of which we just examined.  
Figure 1 depicts the meta cloud’s 
main components. We can categorize 
these components based on whether 
t hey ’r e  impor tant ma in ly for 
cloud software engineers during 
development time or whether they 
perform tasks during runtime. We 
illustrate their interplay using the 
sports betting portal example.

Meta Cloud API
The meta cloud API provides a unified 
programming interface to abstract 
from the differences among provider 
API implementations. For customers, 
using th i s A PI prevent s t he i r 
application from being hard-wired 
to a specific cloud service offering. 
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The meta cloud API can build on 
available cloud provider abstraction 
APIs, as previously mentioned. 
Although these deal mostly with key-
value stores and compute services, in 
principle, all services can be covered 
that are abstract enough for more 
than one provider to offer and whose 
specific APIs don’t differ too much, 
conceptually.

Resource Templates
Developers describe the cloud ser-
vices necessary to run an application 
using resource templates. They can 
specify service types with additional 
proper t ies, and a graph model 
expresses the interrelation and 
functional dependencies between 
services. Developers create the meta 
cloud resource templates using a 
simple domain-specif ic language 
(DSL), letting them concisely specify 
required resources. Resource defi-
nitions are based on a hierarchical 
composition model; thus developers 
can create configurable and reusable 
template components, which enable 
them and their teams to share and 
reuse common resource templates 
in different projects. Using the DSL, 
developers model their application 
components and their basic runtime 
requirements, such as (provider-
independently normalized) CPU, 
memor y, and I /O capacit ies , as 
well as dependencies and weighted 
communication relations between 
these components. The provision-
ing strategy uses the weighted com-
ponent relations to determine the 
application’s optimal deployment 
configuration. Moreover, resource 
templates allow developers to define 
constraints based on costs, compo-
nent proximity, and geographical 
distribution.

Migration and  
Deployment Recipes
Deployment recipes are an important 
ingredient for automation in the meta 
cloud infrastructure. Such recipes 

allow for controlled deployment of 
the application, including installing 
packages, starting required services, 
managing package and applica-
tion parameters, and establishing 
links between related components. 
Automation tools such as Opscode 
Chef provide an extensive set of 
functionalities that are directly inte-
grated into the meta cloud environ-
ment. Migration recipes go one step 
further and describe how to migrate 
an application during runtime — for 
example, migrate storage function-
ality from one service provider to 
another. Recipes only describe ini-
tial deployment and migration; the 
provisioning strategy and the meta 
cloud proxy execute the actual pro-
cess using the aforementioned auto-
mation tools.

Meta Cloud Proxy
The meta cloud provides proxy 
objects, which are deployed with the 
application and run on the provi-
sioned cloud resources. They serve 
as mediators between the application 
and the cloud provider. These prox-
ies expose the meta cloud API to the 
application, transform application 
requests into cloud-provider-specific 
requests, and forward them to the 
respective cloud services. Proxies 
provide a way to execute deployment 

and migration recipes triggered by  
the meta cloud’s provisioning strat-
egy. Moreover, proxy objects send 
QoS statistics to the resource moni-
toring component running within the 
meta cloud. The meta cloud obtains 
the data by intercepting the applica-
tion’s calls to the underlying cloud 
services and measuring their pro-
cessing time, or by executing short 
benchmark programs.

Applications can also define 
and monitor custom QoS metrics 
that the proxy objects send to the 
resource monitoring component to 
enable advanced, application-specific 
management strategies. To avoid high 
load and computational bottlenecks, 
communication between proxies and 
the meta cloud is kept at a minimum. 
Proxies don’t run inside the meta 
cloud, and regular service calls from 
the application to the proxy aren’t 
routed through the meta cloud, either.

Resource Monitoring
On an applicat ion’s request , the 
resource monitor ing component 
receives data collected by meta cloud 
proxies about the resources they’re 
using. The component filters and pro-
cesses these data and then stores them 
on the knowledge base for further pro-
cessing. This helps generate compre-
hensive QoS information about cloud 

Figure 1. Conceptual meta cloud overview. Developers create cloud 
applications using meta cloud development components. The meta cloud 
runtime abstracts from provider specifics using proxy objects, and automates 
application life-cycle management.
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service providers and the particu-
lar services they provide, including 
response time, availability, and more 
service-specific quality statements.

Provisioning Strategy
The provisioning strategy component 
primarily matches an application’s 
cloud service requirements to actual 
cloud service providers. It finds and 
ranks cloud services based on data 
in the knowledge base. The initial 
deployment decision is based on the 
resource templates, specifying the 
resource requirements of an applica-
tion, together with QoS and pricing 
information about service providers. 
The result is a list of possible cloud 
service combinations ranked accord-
ing to expected QoS and costs. At 
runtime, the component can reason 
about whether migrating a resource 
to another resource provider is ben-
eficial based on new insights into the 
application’s behavior and updated 
cloud provider QoS or pricing data. 
Reasoning about migrating also 
involves calculating migration costs. 
Decisions about the provisioning 
strategy result in the component exe-
cuting customer-defined deployment 
or migration scripts.

Knowledge Base
The knowledge base stores data about 
cloud provider services, their pric-
ing and QoS, and information nec-
essary to estimate migration costs. 
It also stores customer-provided 
resource templates and migration or 
deployment recipes. The knowledge 
base indicates which cloud providers  
are eligible for a certain customer. 
These usually comprise all providers 
the customer has an account with and 
providers that offer possibilities for 
creating (sub)accounts on the fly. Sev-
eral information sources contribute to 
the knowledge base: meta cloud prox-
ies regularly send data about applica-
tion behavior and cloud service QoS. 
Users can add cloud service providers’ 
pricing and capabilities manually or 

use crawling techniques that can get 
this information automatically.5

A Meta Cloud Use Case
Let’s come back to the sports applica-
tion use case. A meta-cloud-compliant 
variant of this application accesses 
cloud services using the meta cloud 
API and doesn’t directly talk to the 
cloud-provider-specific service APIs. 
For our particular case, this means the 
application doesn’t depend on Ama-
zon EC2, SQS, or RDS service APIs, 
but rather on the meta cloud’s com-
pute, message queue, and relational 
database service APIs.

For initial deployment, the devel-
oper submits the application’s resource 
template to the meta cloud. It speci-
fies not only the three types of cloud 
services needed to run the sports 
application, but also their necessary 
properties and how they depend on 
each other. For compute resources, for 
instance, the developer can specify 
CPU, RAM, and disk space according 
to terminology defined by the meta 
cloud resource template DSL. Each 
resource can be named in the template, 
which allows for referencing during 
deployment, runtime, and migration. 
The resource template specification 
should also contain interdependencies, 
such as the direct connection between 
the Web service compute instances 
and the message queue service.

The rich information that resource 
templates provide helps the provi-
sioning strategy component make 
profound decisions about cloud ser-
vice ranking. We can explain the 
working principle for initial deploy-
ment with a Web search analogy, in 
which resource templates are que-
ries and cloud service provider QoS 
and pricing information represent  
indexed documents. Algorithmic 
aspects of the actual ranking are 
beyond this article’s scope. If some 
resources in the resource graph are 
only loosely coupled, then the meta 
cloud will be more likely to select 
resources from different cloud providers  

for a single application. In our use 
case, however, we assume that the pro-
visioning strategy ranks the respec-
tive Amazon cloud services first, 
and that the customer follows this 
recommendation.

After the resources are deter-
mined, the meta cloud deploys the 
application, together with an instance 
of the meta cloud proxy, according 
to customer-provided recipes. Dur-
ing runtime, the meta cloud proxy 
mediates between the application 
components and the Amazon cloud 
resources and sends monitoring data 
to the resource monitoring compo-
nent running within the meta cloud.

Monitoring data helps refine the 
application’s resource template and 
the provider’s overall QoS values, 
both stored in the knowledge base. 
The provisioning strategy compo-
nent regularly checks this updated 
information, which might trigger 
a migration. The meta cloud could 
migrate front-end nodes to other 
providers to place them closer to 
the application’s users, for exam-
ple. Another reason for a migra-
tion might be updated pricing data. 
After a price cut by Rackspace, for 
example, services might migrate to 
its cloud offerings. To make these 
decisions, the provisioning strategy 
component must consider potential 
migration costs regarding time and 
money. The actual migration is per-
formed based on customer-provided 
migration recipes.

Working on the meta cloud, we 
face the following technical chal-
lenges. Resource monitoring must 
collect and process data describing 
different cloud providers’ services 
such that the provisioning strategy 
can compare and rank their QoS 
properties in a normalized, provider-
independent fashion. Although solu-
tions for deployment in the cloud are 
relatively mature, application migra-
tion isn’t as well supported. Finding 
the balance between migration facil-
ities provided by the meta cloud and  
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the application is particularly impor-
tant. Cloud-centric migration makes  
the meta cloud infrastructure respon-
sible for most migration aspects, 
leading to issues with application- 
specif ic intr icacies, whereas in 
application-centric migration, the 
meta cloud only triggers the migra-
tion process, leaving its execution 
mostly to the application. We argue 
that the meta cloud should control 
the migration process but offer many 
interception points for applications 
to influence the process at all stages. 
The provisioning strategy — the 
most integrative component, which 
derives strategies mainly based on 
input from runtime monitoring and 
resource templates and effects them 
by executing migration and deploy-
ment recipes — requires further 
research into combining approaches 
from the information retrieval and 
autonomic computing fields.

T he meta cloud can help mitigate 
vendor lock-in and promises 

transparent use of cloud computing 
services. Most of the basic technologies 
necessary to realize the meta cloud 
already exist, yet lack integration. 

Thus, integrating these state-of-the-art 
tools promises a huge leap toward the 
meta cloud. To avoid meta cloud lock-
in, the community must drive the ideas 
and create a truly open meta cloud 
with added value for all customers and 
broad support for different providers 
and implementation technologies.�

References
1.	 M. Armbrust et al., “A View of Cloud 

Computing,” Comm. ACM, vol. 53, no. 4, 

2010, pp. 50–58.

2.	 B.P. Rimal, E. Choi, and I. Lumb, “A Tax-

onomy and Survey of Cloud Computing 

Systems,” Proc. Int’l Conf. Networked Com-

puting and Advanced Information Man-

agement, IEEE CS Press, 2009, pp. 44–51.

3.	 J. Skene, D.D. Lamanna, and W. Emmerich, 

“Precise Service Level Agreements,” 

Proc. 26th Int’l Conf. Software Eng. (ICSE 04), 

IEEE CS Press, 2004, pp. 179–188.

4.	 Q. Zhang, L. Cheng, and R. Boutaba, 

“Cloud Computing: State-of-the-Art and 

Research Challenges,” J. Internet Services 

and Applications, vol. 1, no. 1, 2010, 

pp. 7–18.

5.	 M.D. Dikaiakos, A. Katsifodimos, and  

G. Pallis, “Minersoft: Software Retrieval 

in Grid and Cloud Computing Infrastruc-

tures,” ACM Trans. Internet Technology, 

vol. 12, no. 1, 2012, pp. 2:1–2:34.

Benjamin Satzger is an assistant professor 

in the Distributed Systems Group at the 

Vienna University of Technology. Contact 

him at satzger@dsg.tuwien.ac.at.

Waldemar Hummer is a PhD student in the 

Distributed Systems Group at the Vienna 

University of Technology. Contact him at 

hummer@dsg.tuwien.ac.at.

Christian Inzinger is a PhD student in the 

Distributed Systems Group at the Vienna 

University of Technology. Contact him at 

inzinger@dsg.tuwien.ac.at.

Philipp Leitner is a postdoctoral researcher in 

computer science in the Distributed Sys-

tems Group at the Vienna University of 

Technology. Contact him at leitner@dsg 

.tuwien.ac.at.

Schahram Dustdar is a full professor of com-

puter science and head of the Distributed 

Systems Group at the Vienna University of 

Technology. He is an ACM Distinguished 

Scientist. Contact him at dustdar@dsg 

.tuwien.ac.at.

Selected CS articles and columns 
are also available for free at http:// 

ComputingNow.computer.org.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East: 
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: 
Ann & David Schissler

Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California: 
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast: 
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line and Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

AdvertiSer informAtion • jAnuAry/februAry 2013

IC-17-01-VftC.indd   73 12/3/12   5:45 PM


