
View from the Cloud
Editor: George Pallis • gpallis@cs.ucy.ac.cy

JANUARY/FEBRUARY 2013	 1089-7801/13/$31.00 © 2013 IEEE	 Published by the IEEE Computer Society� 69

T he cloud computing paradigm has achieved
widespread adoption in recent years. Its
success is due largely to customers’ ability

to use services on demand with a pay-as-you go
pricing model, which has proved convenient in
many respects. Low costs and high flexibility
make migrating to the cloud compelling. Despite
its obvious advantages, however, many com-
panies hesitate to “move to the cloud,” mainly
because of concerns related to service availabil-
ity, data lock-in, and legal uncertainties.1 Lock-
in is particularly problematic. For one thing,
even though public cloud availability is gener-
ally high, outages still occur.2 Businesses locked
into such a cloud are essentially at a standstill
until the cloud is back online. Moreover, public
cloud providers generally don’t guarantee par-
ticular service level agreements (SLAs)3 — that is,
businesses locked into a cloud have no guaran-
tees that it will continue to provide the required
quality of service (QoS). Finally, most public
cloud providers’ terms of service let that provider
unilaterally change pricing at any time. Hence, a
business locked into a cloud has no mid- or long-
term control over its own IT costs.

At the core of all these problems, we can
identify a need for businesses to permanently
monitor the cloud they’re using and be able to
rapidly “change horses” — that is, migrate to a
different cloud if they discover problems or if
their estimates predict future issues. However,
migration is currently far from trivial. Myriad cloud

providers are f looding the market with a
confusing body of services, including compute
services such as the Amazon Elastic Compute Cloud
(EC2) and VMware vCloud, or key-value stores,
such as the Amazon Simple Storage Service
(S3). Some of these services are conceptually
comparable to each other, whereas others are
vastly different, but they’re all, ultimately,
technica l ly incompat ible and fol low no
standards but their own. To further complicate
the situation, many companies not (only) build
on public clouds for their cloud computing
needs, but combine public offerings with their
own private clouds, leading to so-called hybrid
cloud setups.4

Here, we introduce the concept of a meta cloud
that incorporates design time and runtime com-
ponents. This meta cloud would abstract away
from existing offerings’ technical incompat-
ibilities, thus mitigating vendor lock-in. It helps
users find the right set of cloud services for a
particular use case and supports an application’s
initial deployment and runtime migration.

Cloud Computing Use Case
Let’s consider a Web-based sports portal for
an event such as the Olympic Games, which
allows users to place bets. An event this
large requires an enormously efficient and
reliable infrastructure, and the cloud computing
paradigm provides the necessary f lexibility
and elast icit y for such a scenar io. It lets

Winds of Change:
From Vendor Lock-In
to the Meta Cloud
Benjamin Satzger, Waldemar Hummer, Christian Inzinger,
Philipp Leitner, and Schahram Dustdar • Vienna University of Technology

The emergence of yet more cloud offerings from a multitude of service providers

calls for a meta cloud to smoothen the edges of the jagged cloud landscape.

This meta cloud could solve the vendor lock-in problems that current public

and hybrid cloud users face.

IC-17-01-VftC.indd 69 12/3/12 5:45 PM

IEEE TRANSACTIONS ON CLOUD COMPUTING YEAR 2013

View from the Cloud

70	 www.computer.org/internet/� IEEE INTERNET COMPUTING

service providers handle short-term
usage spikes without needing res-
pective dedicated resources available
continuously. The problem, however,
is that once an application has been
developed based on one particular
provider’s cloud services and using
its specific API, that application is
bound to that provider; deploying
it on another cloud would usually
require completely redesigning and
rewriting it. Such vendor lock-in
leads to strong dependence on the
cloud service operator. In the sports
portal example, in addition to the
ability to scale applications up and
down by dynamically allocating and
releasing resources, we must consider
additional aspects, such as resource
costs and regional communication
bandwidth and latency.

Let’s assume the sports betting
portal application is based on a
load balancer that forwards HTTP
requests to numerous computing
nodes hosting a Web application
that lets users submit a bet. Request
handlers place bet records in a
message queue and subsequently
store them in a relational database.
Let’s fur ther assume a service
provider realizes this scenario using
only Amazon Web Services (AWS),
EC2 to host applications, Simple
Queue Service (SQS) as its cloud
message queue, and the Relational
Database Service (RDS) as a database
system. Instead of being bound to
one cloud operator, however, the
betting application should be hosted
in an optimal cloud environment.

To leverage a more diverse cloud
landscape, support f lexibility, and
avoid vendor lock-in, the meta cloud
must achieve two main goals:

•	 find the optimal combination of
cloud services for a certain appli-
cation with regard to QoS for users
and price for hosting; and

•	 develop a cloud-based application
once, then run it anywhere, includ-
ing support for runtime migration.

Lately, the meta cloud idea has
received some attention, and several
approaches try to tackle at least parts
of the problem.

Current Weather
in the (Meta) Cloud
First, standardized programming APIs
must enable developers to create
cloud-neutral applications that aren’t
hardwired to any single provider or
cloud service. Cloud provider abstrac-
tion libraries such as libcloud (http://
libcloud.apache.org), fog (http://fog.
io), and jclouds (www.jclouds.org)
provide unified APIs for accessing
different vendors’ cloud products.
Using these libraries, developers are
relieved of technological vendor lock-
in because they can switch cloud
providers for their applications with
relatively low overhead.

As a second ingredient, the meta
c loud uses resource templates
to define concrete features that
the application requires from the
cloud. For instance, an applica-
tion must be able to specify that it
requires a given number of com-
puting resources, Internet access,
and database storage. Some current
tools and initiatives — for example,
Amazon’s CloudFormation (http://
aws.amazon.com/cloudformation/)
or the upcoming TOSCA specification
(www.oasis-open.org/committees/
tosca) — are working toward similar
goals and can be adapted to provide
these required features for the meta
cloud.

In addition to resource templates,
the automated formation and pro-
visioning of cloud applications also
depends on sophisticated features to
actually deploy and install applica-
tions automatically. Predictable and
controlled application deployment is
a central issue for cost-effective and
efficient deployments in the cloud,
and even more so for the meta cloud.
Several application provisioning
solutions exist, enabling developers
and administrators to declaratively

specify deployment artifacts and
dependencies to allow for repeatable
and managed resource provisioning.
Notable examples include Opscode
Chef (www.opscode.com/chef/),
Puppet (http://puppetlabs.com), and
juju (http://juju.ubuntu.com).

At runtime, an important aspect
of the meta cloud is application
monitoring, which enables the meta
cloud to decide whether it’s nec-
essary to provision new instances
of the application or migrate parts
of it. Various vendors provide tools
for cloud monitoring, ranging from
system-level monitoring (such as CPU
and bandwith) to application-level
monitoring (Amazon’s CloudWatch;
http://aws.amazon.com/cloudwatch/)
to SLA monitoring (as with moni-
tis; http://portal.monitis.com/index.
php/cloud-monitoring). However,
the meta c loud requ i res more
sophisticated monitoring techniques
and, in particular, approaches for
making automated provisioning
decisions at runtime based on cur-
rent application users’ context and
location.

Inside the Meta Cloud
To some extent, we can realize the
meta cloud based on a combination
of existing tools and concepts,
part of which we just examined.
Figure 1 depicts the meta cloud’s
main components. We can categorize
these components based on whether
t hey ’r e impor tant ma in ly for
cloud software engineers during
development time or whether they
perform tasks during runtime. We
illustrate their interplay using the
sports betting portal example.

Meta Cloud API
The meta cloud API provides a unified
programming interface to abstract
from the differences among provider
API implementations. For customers,
using th i s A PI prevent s t he i r
application from being hard-wired
to a specific cloud service offering.

IC-17-01-VftC.indd 70 12/3/12 5:45 PM

From Vendor Lock-In to the Meta Cloud

JANUARY/FEBRUARY 2013� 71

The meta cloud API can build on
available cloud provider abstraction
APIs, as previously mentioned.
Although these deal mostly with key-
value stores and compute services, in
principle, all services can be covered
that are abstract enough for more
than one provider to offer and whose
specific APIs don’t differ too much,
conceptually.

Resource Templates
Developers describe the cloud ser-
vices necessary to run an application
using resource templates. They can
specify service types with additional
proper t ies, and a graph model
expresses the interrelation and
functional dependencies between
services. Developers create the meta
cloud resource templates using a
simple domain-specif ic language
(DSL), letting them concisely specify
required resources. Resource defi-
nitions are based on a hierarchical
composition model; thus developers
can create configurable and reusable
template components, which enable
them and their teams to share and
reuse common resource templates
in different projects. Using the DSL,
developers model their application
components and their basic runtime
requirements, such as (provider-
independently normalized) CPU,
memor y, and I /O capacit ies , as
well as dependencies and weighted
communication relations between
these components. The provision-
ing strategy uses the weighted com-
ponent relations to determine the
application’s optimal deployment
configuration. Moreover, resource
templates allow developers to define
constraints based on costs, compo-
nent proximity, and geographical
distribution.

Migration and
Deployment Recipes
Deployment recipes are an important
ingredient for automation in the meta
cloud infrastructure. Such recipes

allow for controlled deployment of
the application, including installing
packages, starting required services,
managing package and applica-
tion parameters, and establishing
links between related components.
Automation tools such as Opscode
Chef provide an extensive set of
functionalities that are directly inte-
grated into the meta cloud environ-
ment. Migration recipes go one step
further and describe how to migrate
an application during runtime — for
example, migrate storage function-
ality from one service provider to
another. Recipes only describe ini-
tial deployment and migration; the
provisioning strategy and the meta
cloud proxy execute the actual pro-
cess using the aforementioned auto-
mation tools.

Meta Cloud Proxy
The meta cloud provides proxy
objects, which are deployed with the
application and run on the provi-
sioned cloud resources. They serve
as mediators between the application
and the cloud provider. These prox-
ies expose the meta cloud API to the
application, transform application
requests into cloud-provider-specific
requests, and forward them to the
respective cloud services. Proxies
provide a way to execute deployment

and migration recipes triggered by
the meta cloud’s provisioning strat-
egy. Moreover, proxy objects send
QoS statistics to the resource moni-
toring component running within the
meta cloud. The meta cloud obtains
the data by intercepting the applica-
tion’s calls to the underlying cloud
services and measuring their pro-
cessing time, or by executing short
benchmark programs.

Applications can also define
and monitor custom QoS metrics
that the proxy objects send to the
resource monitoring component to
enable advanced, application-specific
management strategies. To avoid high
load and computational bottlenecks,
communication between proxies and
the meta cloud is kept at a minimum.
Proxies don’t run inside the meta
cloud, and regular service calls from
the application to the proxy aren’t
routed through the meta cloud, either.

Resource Monitoring
On an applicat ion’s request , the
resource monitor ing component
receives data collected by meta cloud
proxies about the resources they’re
using. The component filters and pro-
cesses these data and then stores them
on the knowledge base for further pro-
cessing. This helps generate compre-
hensive QoS information about cloud

Figure 1. Conceptual meta cloud overview. Developers create cloud
applications using meta cloud development components. The meta cloud
runtime abstracts from provider specifics using proxy objects, and automates
application life-cycle management.

Meta cloud
API

Resource
templates

Migration/
deployment

recipies Development

Application

Meta cloud
proxyResource

monitoring
Provisioning

strategy
Knowledge

base

C
lo

ud
 p

ro
vi

de
r

Meta cloud

Runtime

Information �ow
Implements

IC-17-01-VftC.indd 71 12/3/12 5:45 PM

View from the Cloud

72	 www.computer.org/internet/� IEEE INTERNET COMPUTING

service providers and the particu-
lar services they provide, including
response time, availability, and more
service-specific quality statements.

Provisioning Strategy
The provisioning strategy component
primarily matches an application’s
cloud service requirements to actual
cloud service providers. It finds and
ranks cloud services based on data
in the knowledge base. The initial
deployment decision is based on the
resource templates, specifying the
resource requirements of an applica-
tion, together with QoS and pricing
information about service providers.
The result is a list of possible cloud
service combinations ranked accord-
ing to expected QoS and costs. At
runtime, the component can reason
about whether migrating a resource
to another resource provider is ben-
eficial based on new insights into the
application’s behavior and updated
cloud provider QoS or pricing data.
Reasoning about migrating also
involves calculating migration costs.
Decisions about the provisioning
strategy result in the component exe-
cuting customer-defined deployment
or migration scripts.

Knowledge Base
The knowledge base stores data about
cloud provider services, their pric-
ing and QoS, and information nec-
essary to estimate migration costs.
It also stores customer-provided
resource templates and migration or
deployment recipes. The knowledge
base indicates which cloud providers
are eligible for a certain customer.
These usually comprise all providers
the customer has an account with and
providers that offer possibilities for
creating (sub)accounts on the fly. Sev-
eral information sources contribute to
the knowledge base: meta cloud prox-
ies regularly send data about applica-
tion behavior and cloud service QoS.
Users can add cloud service providers’
pricing and capabilities manually or

use crawling techniques that can get
this information automatically.5

A Meta Cloud Use Case
Let’s come back to the sports applica-
tion use case. A meta-cloud-compliant
variant of this application accesses
cloud services using the meta cloud
API and doesn’t directly talk to the
cloud-provider-specific service APIs.
For our particular case, this means the
application doesn’t depend on Ama-
zon EC2, SQS, or RDS service APIs,
but rather on the meta cloud’s com-
pute, message queue, and relational
database service APIs.

For initial deployment, the devel-
oper submits the application’s resource
template to the meta cloud. It speci-
fies not only the three types of cloud
services needed to run the sports
application, but also their necessary
properties and how they depend on
each other. For compute resources, for
instance, the developer can specify
CPU, RAM, and disk space according
to terminology defined by the meta
cloud resource template DSL. Each
resource can be named in the template,
which allows for referencing during
deployment, runtime, and migration.
The resource template specification
should also contain interdependencies,
such as the direct connection between
the Web service compute instances
and the message queue service.

The rich information that resource
templates provide helps the provi-
sioning strategy component make
profound decisions about cloud ser-
vice ranking. We can explain the
working principle for initial deploy-
ment with a Web search analogy, in
which resource templates are que-
ries and cloud service provider QoS
and pricing information represent
indexed documents. Algorithmic
aspects of the actual ranking are
beyond this article’s scope. If some
resources in the resource graph are
only loosely coupled, then the meta
cloud will be more likely to select
resources from different cloud providers

for a single application. In our use
case, however, we assume that the pro-
visioning strategy ranks the respec-
tive Amazon cloud services first,
and that the customer follows this
recommendation.

After the resources are deter-
mined, the meta cloud deploys the
application, together with an instance
of the meta cloud proxy, according
to customer-provided recipes. Dur-
ing runtime, the meta cloud proxy
mediates between the application
components and the Amazon cloud
resources and sends monitoring data
to the resource monitoring compo-
nent running within the meta cloud.

Monitoring data helps refine the
application’s resource template and
the provider’s overall QoS values,
both stored in the knowledge base.
The provisioning strategy compo-
nent regularly checks this updated
information, which might trigger
a migration. The meta cloud could
migrate front-end nodes to other
providers to place them closer to
the application’s users, for exam-
ple. Another reason for a migra-
tion might be updated pricing data.
After a price cut by Rackspace, for
example, services might migrate to
its cloud offerings. To make these
decisions, the provisioning strategy
component must consider potential
migration costs regarding time and
money. The actual migration is per-
formed based on customer-provided
migration recipes.

Working on the meta cloud, we
face the following technical chal-
lenges. Resource monitoring must
collect and process data describing
different cloud providers’ services
such that the provisioning strategy
can compare and rank their QoS
properties in a normalized, provider-
independent fashion. Although solu-
tions for deployment in the cloud are
relatively mature, application migra-
tion isn’t as well supported. Finding
the balance between migration facil-
ities provided by the meta cloud and

IC-17-01-VftC.indd 72 12/3/12 5:45 PM

From Vendor Lock-In to the Meta Cloud

JANUARY/FEBRUARY 2013� 73

the application is particularly impor-
tant. Cloud-centric migration makes
the meta cloud infrastructure respon-
sible for most migration aspects,
leading to issues with application-
specif ic intr icacies, whereas in
application-centric migration, the
meta cloud only triggers the migra-
tion process, leaving its execution
mostly to the application. We argue
that the meta cloud should control
the migration process but offer many
interception points for applications
to influence the process at all stages.
The provisioning strategy — the
most integrative component, which
derives strategies mainly based on
input from runtime monitoring and
resource templates and effects them
by executing migration and deploy-
ment recipes — requires further
research into combining approaches
from the information retrieval and
autonomic computing fields.

T he meta cloud can help mitigate
vendor lock-in and promises

transparent use of cloud computing
services. Most of the basic technologies
necessary to realize the meta cloud
already exist, yet lack integration.

Thus, integrating these state-of-the-art
tools promises a huge leap toward the
meta cloud. To avoid meta cloud lock-
in, the community must drive the ideas
and create a truly open meta cloud
with added value for all customers and
broad support for different providers
and implementation technologies.�

References
1.	 M. Armbrust et al., “A View of Cloud

Computing,” Comm. ACM, vol. 53, no. 4,

2010, pp. 50–58.

2.	 B.P. Rimal, E. Choi, and I. Lumb, “A Tax-

onomy and Survey of Cloud Computing

Systems,” Proc. Int’l Conf. Networked Com-

puting and Advanced Information Man-

agement, IEEE CS Press, 2009, pp. 44–51.

3.	 J. Skene, D.D. Lamanna, and W. Emmerich,

“Precise Service Level Agreements,”

Proc. 26th Int’l Conf. Software Eng. (ICSE 04),

IEEE CS Press, 2004, pp. 179–188.

4.	 Q. Zhang, L. Cheng, and R. Boutaba,

“Cloud Computing: State-of-the-Art and

Research Challenges,” J. Internet Services

and Applications, vol. 1, no. 1, 2010,

pp. 7–18.

5.	 M.D. Dikaiakos, A. Katsifodimos, and

G. Pallis, “Minersoft: Software Retrieval

in Grid and Cloud Computing Infrastruc-

tures,” ACM Trans. Internet Technology,

vol. 12, no. 1, 2012, pp. 2:1–2:34.

Benjamin Satzger is an assistant professor

in the Distributed Systems Group at the

Vienna University of Technology. Contact

him at satzger@dsg.tuwien.ac.at.

Waldemar Hummer is a PhD student in the

Distributed Systems Group at the Vienna

University of Technology. Contact him at

hummer@dsg.tuwien.ac.at.

Christian Inzinger is a PhD student in the

Distributed Systems Group at the Vienna

University of Technology. Contact him at

inzinger@dsg.tuwien.ac.at.

Philipp Leitner is a postdoctoral researcher in

computer science in the Distributed Sys-

tems Group at the Vienna University of

Technology. Contact him at leitner@dsg

.tuwien.ac.at.

Schahram Dustdar is a full professor of com-

puter science and head of the Distributed

Systems Group at the Vienna University of

Technology. He is an ACM Distinguished

Scientist. Contact him at dustdar@dsg

.tuwien.ac.at.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
Ann & David Schissler

Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line and Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

AdvertiSer informAtion • jAnuAry/februAry 2013

IC-17-01-VftC.indd 73 12/3/12 5:45 PM

