

node or a text node. A tag node corresponds to an HTML tag
surrounded by “<” and “>” in HTML source, while a text
node is the text outside the “<” and “>.” Text nodes are the
visible elements on the webpage and data units are located
in the text nodes. However, as we can see from Fig. 1, text
nodes are not always identical to data units. Since our
annotation is at the data unit level, we need to identify data
units from text nodes.

Depending on how many data units a text node may
contain, we identify the following four types of relationships
between data unit (U) and text node (T):

. One-to-One Relationship (denoted as T ¼ U). In this
type, each text node contains exactly one data unit,
i.e., the text of this node contains the value of a single
attribute. This is the most frequently seen case. For
example, in Fig. 1, each text node surrounded by the
pair of tags <A> and is a value of the Title
attribute. We refer to such kind of text nodes as
atomic text nodes. An atomic text node is equivalent to
a data unit.

. One-to-Many Relationship (denoted as T � U). In this
type, multiple data units are encoded in one text
node. For example, in Fig. 1, part of the second line of
each SRR (e.g., “Springer-Verlag/1999/0387984135/
0.06667” in the first record) is a single text node. It
consists of four semantic data units: Publisher,
Publication Date, ISBN, and Relevance Score. Since the
text of such kind of nodes can be considered as a
composition of the texts of multiple data units, we
call it a composite text node. An important observation
that can be made is: if the data units of attributes
A1 . . .Ak in one SRR are encoded as a composite text
node, it is usually true that the data units of the same
attributes in other SRRs returned by the same WDB
are also encoded as composite text nodes, and those
embedded data units always appear in the same
order. This observation is valid in general because
SRRs are generated by template programs. We need
to split each composite text node to obtain real data
units and annotate them. Section 4 describes our
splitting algorithm.

. Many-to-One Relationship (denoted as T � U). In this
case, multiple text nodes together form a data unit.
Fig. 3 shows an example of this case. The value of the
Author attribute is contained in multiple text nodes
with each embedded inside a separate pair of (<A>,
) HTML tags. As another example, the tags
and surrounding the keyword “Java” split the
title string into three text nodes. It is a general

practice that webpage designers use special HTML
tags to embellish certain information. Zhao et al. [35]
call this kind of tags as decorative tags because they are
used mainly for changing the appearance of part of
the text nodes. For the purpose of extraction and
annotation, we need to identify and remove these
tags inside SRRs so that the wholeness of each split
data unit can be restored. The first step of our
alignment algorithm handles this case specifically
(see Section 4 for details).

. One-To-Nothing Relationship (denoted as T 6¼ U). The
text nodes belonging to this category are not part of
any data unit inside SRRs. For example, in Fig. 3, text
nodes like “Author” and “Publisher” are not data
units, but are instead the semantic labels describing
the meanings of the corresponding data units.
Further observations indicate that these text nodes
are usually displayed in a certain pattern across all
SRRs. Thus, we call them template text nodes. We
employ a frequency-based annotator (see Section 5.2)
to identify template text nodes.

3.2 Data Unit and Text Node Features

We identify and use five common features shared by the
data units belonging to the same concept across all SRRs,
and all of them can be automatically obtained. It is not
difficult to see that all these features are applicable to text
nodes, including composite text nodes involving the same
set of concepts, and template text nodes.

3.2.1 Data Content (DC)

The data units or text nodes with the same concept often
share certain keywords. This is true for two reasons. First, the
data units corresponding to the search field where the user
enters a search condition usually contain the search key-
words. For example, in Fig. 1, the sample result page is
returned for the search on the title field with keyword
“machine.” We can see that all the titles have this keyword.
Second, web designers sometimes put some leading label in
front of certain data unit within the same text node to make it
easier for users to understand the data. Text nodes that
contain data units of the same concept usually have the same
leading label. For example, in Fig. 1, the price of every book
has leading words “Our Price” in the same text node.

3.2.2 Presentation Style (PS)

This feature describes how a data unit is displayed on a
webpage. It consists of six style features: font face, font size,
font color, font weight, text decoration (underline, strike, etc.),
and whether it is italic. Data units of the same concept in
different SRRs are usually displayed in the same style. For
example, in Fig. 1, all the availability information is
displayed in the exactly same presentation style.

3.2.3 Data Type (DT)

Each data unit has its own semantic type although it is just a
text string in the HTML code. The following basic data types
are currently considered in our approach: Date, Time,
Currency, Integer, Decimal, Percentage, Symbol, and String.
String type is further defined in All-Capitalized-String, First-
Letter-Capitalized-String, and Ordinary String. The data type of

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 517

Fig. 3. An example illustrating the Many-to-One relationship.

a composite text node is the concatenation of the data types of
all its data units. For example, the data type of the text node
“Premier Press/2002/1931841616/0.06667” in Fig. 1 is
<First-Letter-Capitalized-String> <Symbol> <Integer>
<Symbol> <Integer> <Symbol> <Decimal>. Consecutive
terms with the same data type are treated as a single term
and only one of them will be kept. Each type except Ordinary
String has certain pattern(s) so that it can be easily identified.
The data units of the same concept or text nodes involving the
same set of concepts usually have the same data type.

3.2.4 Tag Path (TP)

A tag path of a text node is a sequence of tags traversing from
the root of the SRR to the corresponding node in the tag tree.
Since we use ViNTs for SRR extraction, we adopt the same
tag path expression as in [34]. Each node in the expression
contains two parts, one is the tag name, and the other is the
direction indicating whether the next node is the next sibling
(denoted as “S”) or the first child (denoted as “C”). Text node
is simply represented as <#TEXT>. For example, in Fig. 1b,
the tag path of the text node “Springer-Verlag/1999/
0387984135/0.06667” is <FORM>C<A>C
S<#TEXT>S
C<T>C. An observation is that the tag paths of the
text nodes with the same set of concepts have very similar
tag paths, though in many cases, not exactly the same.

3.2.5 Adjacency (AD)

For a given data unit d in an SRR, let dp and ds denote the data
units immediately before and after d in the SRR, respectively.
We refer dp and ds as the preceding and succeeding data
units of d, respectively. Consider two data units d1 and d2

from two separate SRRs. It can be observed that if dp1 and dp2
belong to the same concept and/or ds1 and ds2 belong to the
same concept, then it is more likely that d1 and d2 also belong
to the same concept.

We note that none of the above five features is guaranteed
to be true for any particular pair of data units (or text nodes)
with the same concept. For example, in Fig. 1, “Springer-
Verlag” and “McGraw-Hill” are both publishers but they do
not share any content words. However, such data units
usually share some other features. As a result, our alignment
algorithm (Section 4) can still work well even in the presence
of some violation of these features. This is confirmed by our
experimental results in Section 7.

4 DATA ALIGNMENT

4.1 Data Unit Similarity

The purpose of data alignment is to put the data units of the
same concept into one group so that they can be annotated
holistically. Whether two data units belong to the same
concept is determined by how similar they are based on the
features described in Section 3.2. In this paper, the similarity
between two data units (or two text nodes) d1 and d2 is a
weighted sum of the similarities of the five features between
them, i.e.:

Simðd1; d2Þ ¼ w1 � SimCðd1; d2Þ þ w2 � SimP ðd1; d2Þ
þ w3 � SimDðd1; d2Þ þ w4 � SimT ðd1; d2Þ
þ w5 � SimAðd1; d2Þ:

ð1Þ

The weights in the above formula are obtained using a
genetic algorithm based method [10] and the trained weights
are given in Section 7.2. The similarity for each individual
feature is defined as follows:

. Data content similarity (SimC). It is the Cosine
similarity [27] between the term frequency vectors of
d1 and d2:

SimCðd1; d2Þ ¼
Vd1 � Vd2

Vd1k k � Vd2k k ; ð2Þ

where Vd is the frequency vector of the terms inside
data unit d, jjVdjj is the length of Vd, and the
numerator is the inner product of two vectors.

. Presentation style similarity (SimP). It is the
average of the style feature scores (FS) over all six
presentation style features (F) between d1 and d2:

SimP ðd1; d2Þ ¼
X6

i¼1

FSi=6; ð3Þ

where FSi is the score of the ith style feature and it is
defined by FSi ¼ 1 if Fd1

i ¼ F
d2
i and FSi ¼ 0 other-

wise, and Fd
i is the ith style feature of data unit d.

. Data type similarity (SimD). It is determined by the
common sequence of the component data types
between two data units. The longest common
sequence (LCS) cannot be longer than the number
of component data types in these two data units.
Thus, let t1 and t2 be the sequences of the data types of
d1 and d2, respectively, and TLen(t) represent the
number of component types of data type t, the data
type similarity between data units d1 and d2 is

SimDðd1; d2Þ ¼
LCSðt1; t2Þ

MaxðTlenðt1Þ; T lenðt2ÞÞ
: ð4Þ

. Tag path similarity (SimT). This is the edit distance
(EDT) between the tag paths of two data units. The
edit distance here refers to the number of insertions
and deletions of tags needed to transform one tag
path into the other. It can be seen that the maximum
number of possible operations needed is the total
number of tags in the two tag paths. Let p1 and p2 be
the tag paths of d1 and d2, respectively, and PLen(p)
denote the number of tags in tag path p, the tag path
similarity between d1 and d2 is

SimT ðd1; d2Þ ¼ 1� EDT ðp1; p2Þ
PLenðp1Þ þ PLenðp2Þ

: ð5Þ

Note that in our edit distance calculation, a
substitution is considered as a deletion followed
by an insertion, requiring two operations. The
rationale is that two attributes of the same concept
tend to be encoded in the same subtree in DOM
(relative to the root of their SRRs) even though
some decorative tags may appear in one SRR but
not in the other. For example, consider two pairs
of tag paths (<T1><T2><T3>, <T1> <T3>) and
(<T1><T2><T3>, <T1><T4><T3>). The two tag

518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

positions within SRRs so that group Gj contains the j th text
node from each SRR (lines 3-4). Since a particular SRR may
have no value(s) for certain attribute(s) (e.g., a book would
not have discount priceif it is not on sale), Gj may contain the
elements of different concepts. We apply the agglomerative
clustering algorithm [17] to cluster the text nodes inside this
group (line 7 and CLUSTERING). Initially, each text node
forms a separate cluster of its own. We then repeatedly
merge two clusters that have the highest similarity value
until no two clusters have similarity above a threshold T.
After clustering, we obtain a set of clusters V and each cluster
contains the elements of the same concept only.

Recall that attributes are assumed to be encoded in the
same order across all SRRs. Suppose an attributeAj is
missing in an SRR. Since we are initially aligned by position,
the element of attribute Ak, where k > j is put into group Gj .
This element must have certain commonalities with some
other elements of the same concept in the groups following
Gj , which should be reflected by higher similarity values.
Thus, if we get multiple clusters from the above step, the one
having the least similarity (V[c]) with the groups following
Gj should belong to attribute Aj (lines 9-13). Finally in Step 2,
for each element in the clusters other than V[c], shift it (and
all elements after it) to the next group. Lines 14-16 show that
we achieve this by inserting an NIL element at position j in
the corresponding SRRs. This process is repeated for
position j þ 1 (line 17) until all the text nodes are considered
(lines 5-6).

Example 1. In Fig. 5, after initial alignment, there are three
alignment groups. The first group G1 is clustered into two
clusters {{a1, b1}, {c1}}. Suppose {a1, b1} is the least similar
to G2 and G3, we then shift c1 one position to the right. The
figure on the right depicts all groups after shifting.

After the text nodes are grouped using the above
procedure, we need to determine whether a group needs to
be further split to obtain the actual data units (Step 3). First,
we identify groups whose text nodes are not “split-able.”
Each such a group satisfies one of the following conditions:

1. each of its text nodes is a hyperlink (a hyperlink is
assumed to already represent a single semantic unit);

2. the texts of all the nodes in the group are the same;
3. all the nodes in the group have the same nonstring

data type; and
4. the group is not a merged group from Step 1.

Next, we try to split each group that does not satisfy any of
the above conditions. To do the splitting correctly, we need
to identify the right separators. We observe that the same
separator is usually used to separate the data units of a given
pair of attributes across all SRRs retrieved from the same

WDB although it is possible that different separators are
used for data units of different attribute pairs. Based on this
observation, in this step, we first scan the text strings of every
text node in the group and select the symbol(s) (nonletter,
nondigit, noncurrency, nonparenthesis, and nonhyphen)
that occur in most strings in consistent positions. Second,
for each text node in the group, its text is split into several
small pieces using the separator(s), each of which becomes a
real data unit. As an example, in “Springer-Verlag/1999/
0387984135 /0.06667,” “/” is the separator and it splits the
composite text node into four data units.

The data units in a composite group are not always
aligned after splitting because some attributes may have
missing values in the composite text node. Our solution is
to apply the same alignment algorithm in Step 2 here, i.e.,
initially align based on each data unit’s natural position and
then apply the clustering-based shifting method. The only
difference is that, in Step 4, since all data units to be aligned
are split from the same composite text node, they share the
same presentation style and tag path. Thus, in this case,
these two features are not used for calculating similarity for
aligning data units. Their feature weights are proportionally
distributed to the three features used.

DeLa [30] also detects the separators inside composite text
nodes and uses them to separate the data units. However, in
DeLa, the separated pieces are simply aligned by their natural
order and missing attribute values are not considered.

5 ASSIGNING LABELS

5.1 Local versus Integrated Interface Schemas
For a WDB, its search interface often contains some attributes
of the underlying data. We denote a LIS as Si ¼ f A1; A2;
. . . ; Akg, where each Aj is an attribute. When a query is
submitted against the search interface, the entities in the
returned results also have a certain hiddenschema, denoted
as Se ¼ f a1; a2; . . . ; ang, where each aj (j ¼ 1 . . .n) is an
attribute to be discovered. The schema of the retrieved data
and the LIS usually share a significant number of attributes
[29]. This observation provides the basis for some of our
basic annotators (see Section 5.2). If an attributeat in the
search results has a matched attribute At in the LIS, all the
data units identified with at can be labeled by the name ofAt .

However, it is quite often that Se is not entirely contained
in Si because some attributes of the underlying database are
not suitable or needed for specifying query conditions as
determined by the developer of the WDB, and these
attributes would not be included in Si . This phenomenon
raises a problem called local interface schema inadequacy
problem. Specifically, it is possible that a hidden attribute
discovered in the search result schema Se does not have a
matching attribute At in the LIS Si . In this case, there will be
no label in the search interface that can be assigned to the
discovered data units of this attribute.

Another potential problem associated with using LISs for
annotation is the inconsistent label problem, i.e., different labels
are assigned to semantically identical data units returned
from different WDBs because different LISs may give
different names to the same attribute. This can cause problem

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

Fig. 5. An example illustrating Step 2 of the alignment algorithm.

As a result, the query-based annotator by itself cannot
completely annotate the SRRs.

DeLa [30] also uses query terms to match the data unit
texts and use the name of the queried form element as the
label. However, DeLa uses only local schema element names,
not element names in the IIS.

5.2.3 Schema Value Annotator (SA)

Many attributes on a search interface have predefined values
on the interface. For example, the attribute Publishers may
have a set of predefined values (i.e., publishers) in its
selection list. More attributes in the IIS tend to have
predefined values and these attributes are likely to have
more such values than those in LISs, because when attributes
from multiple interfaces are integrated, their values are also
combined [14]. Our schema value annotator utilizes the
combined value set to perform annotation.

Given a group of data units Gi ¼ fd1; . . . ; dng, the
schema value annotator is to discover the best matched
attribute to the group from the IIS. Let Aj be an attribute
containing a list of values fv1; . . . ; vmg in the IIS. For each
data unit dk, this annotator first computes the Cosine
similarities between dk and all values in Aj to find the value
(say vt) with the highest similarity. Then, the data fusion
function CombMNZ [19] is applied to the similarities for all
the data units. More specifically, the annotator sums up the
similarities and multiplies the sum by the number of
nonzero similarities. This final value is treated as the
matching score between Gi and Aj.

The schema value annotator first identifies the attribute
Aj that has the highest matching score among all attributes
and then uses gn(Aj) to annotate the group Gi. Note that
multiplying the above sum by the number of nonzero
similarities is to give preference to attributes that have more
matches (i.e., having nonzero similarities) over those that
have fewer matches. This is found to be very effective in
improving the retrieval effectiveness of combination systems
in information retrieval [4].

5.2.4 Frequency-Based Annotator (FA)

In Fig. 1, “Our Price” appears in the three records and the
followed price values are all different in these records. In
other words, the adjacent units have different occurrence
frequencies. As argued in [1], the data units with the higher
frequency are likely to be attribute names, as part of the
template program for generating records, while the data
units with the lower frequency most probably come from
databases as embedded values. Following this argument,
“Our Price” can be recognized as the label of the value
immediately following it. The phenomenon described in this
example is widely observable on result pages returned by
many WDBs and our frequency-based annotator is designed
to exploit this phenomenon.

Consider a group Gi whose data units have a lower
frequency. The frequency-based annotator intends to find
common preceding units shared by all the data units of the
group Gi. This can be easily conducted by following their
preceding chains recursively until the encountered data units
are different. All found preceding units are concatenated to
form the label for the group Gi.

Example 2. In Fig. 1, during the data alignment step, a group
is formed for {“$17.50,” “$18.95,” “$20.50”}. Clearly the
data units in this group have different values. These
values share the same preceding unit “Our Price,” which
occurs in all SRRs. Furthermore, “Our Price” does not
have preceding data units because it is the first unit in this
line. Therefore, the frequency-based annotator will assign
label “Our Price” to this group.

5.2.5 In-Text Prefix/Suffix Annotator (IA)

In some cases, a piece of data is encoded with its label to
form a single unit without any obvious separator between
the label and the value, but it contains both the label and the
value. Such nodes may occur in all or multiple SRRs. After
data alignment, all such nodes would be aligned together to
form a group. For example, in Fig. 1, after alignment, one
group may contain three data units, {“You Save $9.50,”
“You Save $11.04,” “You Save $4.45”}.

The in-text prefix/suffix annotator checks whether all
data units in the aligned group share the same prefix or
suffix. If the same prefix is confirmed and it is not a
delimiter, then it is removed from all the data units in the
group and is used as the label to annotate values following
it. If the same suffix is identified and if the number of data
units having the same suffix match the number of data units
inside the next group, the suffix is used to annotate the data
units inside the next group. In the above example, the label
“You save” will be assigned to the group of prices. Any
group whose data unit texts are completely identical is not
considered by this annotator.

5.2.6 Common Knowledge Annotator (CA)

Some data units on the result page are self-explanatory
because of the common knowledge shared by human beings.
For example, “in stock” and “out of stock” occur in many
SRRs from e-commerce sites. Human users understand that
it is about the availability of the product because this is
common knowledge. So our common knowledge annotator
tries to exploit this situation by using some predefined
common concepts.

Each common concept contains a label and a set of
patterns or values. For example, a country concept has a
label “country” and a set of values such as “U.S.A.,”
“Canada,” and so on. As another example, the e-mail
address (assume all lower cases) concept has the pattern
½a-z0� 9: %þ�� þ@ð½a-z0� 9�� þ n:Þ þ ½a-z�f2; 4g. Given a
group of data units from the alignment step, if all the data
units match the pattern or value of a concept, the label of this
concept is assigned to the data units of this group.

DeLa [30] also uses some conventions to annotate data
units. However, it only considers certain patterns. Our
Common knowledge annotator considers both patterns and
certain value sets such as the set of countries.

It should be pointed out that our common concepts are
different from the ontologies that are widely used in some
works in Semantic Web (e.g., [6], [11], [12], [16], [26]). First,
our common concepts are domain independent. Second,
they can be obtained from existing information resources
with little additional human effort.

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013

5.3 Combining Annotators

Our analysis indicates that no single annotator is capable of
fully labeling all the data units on different result pages. The
applicability of an annotator is the percentage of the attributes
to which the annotator can be applied. For example, if out of
10 attributes, four appear in tables, then the applicability of
the table annotator is 40 percent. Table 1 shows the average
applicability of each basic annotator across all testing
domains in our data set. This indicates that the results of
different basic annotators should be combined in order to
annotate a higher percentage of data units. Moreover,
different annotators may produce different labels for a given
group of data units. Therefore, we need a method to select the
most suitable one for the group.

Our annotators are fairly independent from each other
since each exploits an independent feature. Based on this
characteristic, we employ a simple probabilistic method to
combine different annotators. For a given annotator L, let
P ðLÞ be the probability that L is correct in identifying a
correct label for a group of data units when L is applicable.
P ðLÞ is essentially the success rate of L. Specifically, suppose
L is applicable to N cases and among these cases M are
annotated correctly, then P ðLÞ ¼M=N . If k independent
annotators Li, i ¼ 1; . . . ; k, identify the same label for a
group of data units, then the combined probability that at
least one of the annotators is correct is

1�
Yk

i¼1

ð1� P ðLiÞÞ: ð7Þ

To obtain the success rate of an annotator, we use the
annotator to annotate every result page in a training data set
(DS1 in Section 7.1). The training result is listed in Table 1. It
can be seen that the table annotator is 100 percent correct
when applicable. The query-based annotator also has very
high success rate while the schema value annotator is the
least accurate.

An important issue DeLa did not address is what if
multiple heuristics can be applied to a data unit. In our
solution, if multiple labels are predicted for a group of data
units by different annotators, we compute the combined
probability for each label based on the annotators that
identified the label, and select the label with the largest
combined probability.

One advantage of this model is its high flexibility in the
sense that when an existing annotator is modified or a new

annotator is added in, all we need is to obtain the
applicability and success rate of this new/revised annotator
while keeping all remaining annotators unchanged. We also
note that no domain-specific training is needed to obtain the
applicability and success rate of each annotator.

6 ANNOTATION WRAPPER

Once the data units on a result page have been annotated,
we use these annotated data units to construct an annota-
tion wrapper for the WDB so that the new SRRs retrieved
from the same WDB can be annotated using this wrapper
quickly without reapplying the entire annotation process.
We now describe our method for constructing such a
wrapper below.

Each annotated group of data units corresponds to an
attribute in the SRRs. The annotation wrapper is a descrip-
tion of the annotation rules for all the attributes on the result
page. After the data unit groups are annotated, they are
organized based on the order of its data units in the original
SRRs. Consider the ith group Gi. Every SRR has a tag-node
sequence like Fig. 1b that consists of only HTML tag names
and texts. For each data unit inGi, we scan the sequence both
backward and forward to obtain the prefix and suffix of the
data unit. The scan stops when an encountered unit is a valid
data unit with a meaningful label assigned. Then, we
compare the prefixes of all the data units in Gi to obtain
the common prefix shared by these data units. Similarly, the
common suffix is obtained by comparing all the suffixes of
these data units. For example, the data unit for book title in
Fig. 1b has “<FORM><A>” as its prefix and “
” as
its suffix. If a data unit is generated by splitting from a
composite text node, then its prefix and suffix are the same
as those of its parent data unit. This wrapper is similar to the
LR wrapper in [18]. Here, we use prefix as the left delimiter,
and suffix as the right delimiter to identify data units.
However, the LR wrapper has difficulties to extract data
units packed inside composite text nodes due to the fact that
there is no HTML tag within a text node. To overcome this
limitation, besides the prefix and suffix, we also record the
separators used for splitting the composite text node as well
as its position index in the split unit vector. Thus, the
annotation rule for each attribute consists of five compo-
nents, expressed as: attributei ¼ <labeli; prefixi; suffixi;
separatorsi; unitindexi>. The annotation wrapper for the
site is simply a collection of the annotation rules for all the
attributes identified on the result page with order corre-
sponding to the ordered data unit groups.

To use the wrapper to annotate a new result page, for each
data unit in an SRR, the annotation rules are applied on it one
by one based on the order they appear in the wrapper. If this
data unit has the same prefix and suffix as specified in the
rule, the rule is matched and the unit is labeled with the given
label in the rule. If the separators are specified, they are used
to split the unit, and labeli is assigned to the unit at the
position unitindexi.

LU ET AL.: ANNOTATING SEARCH RESULTS FROM WEB DATABASES 523

TABLE 1
Applicabilities and Success Rates of Annotators

