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Dynamic Query Forms for Database Queries
Liang Tang, Tao Li, Yexi Jiang, and Zhiyuan Chen

Abstract—Modern scientific databases and web databases maintain large and heterogeneous data. These real-world databases
contain over hundreds or even thousands of relations and attributes. Traditional predefined query forms are not able to satisfy
various ad-hoc queries from users on those databases. This paper proposes DQF, a novel database query form interface, which is
able to dynamically generate query forms. The essence of DQF is to capture a user’s preference and rank query form components,
assisting him/her to make decisions. The generation of a query form is an iterative process and is guided by the user. At
each iteration, the system automatically generates ranking lists of form components and the user then adds the desired form
components into the query form. The ranking of form components is based on the captured user preference. A user can also
fill the query form and submit queries to view the query result at each iteration. In this way, a query form could be dynamically
refined till the user satisfies with the query results. We utilize the expected F-measure for measuring the goodness of a query
form. A probabilistic model is developed for estimating the goodness of a query form in DQF. Our experimental evaluation and
user study demonstrate the effectiveness and efficiency of the system.

Index Terms—Query Form, User Interaction, Query Form Generation,
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1 INTRODUCTION

Query form is one of the most widely used user inter-
faces for querying databases. Traditional query forms
are designed and predefined by developers or DBA in
various information management systems. With the
rapid development of web information and scientific
databases, modern databases become very large and
complex. In natural sciences, such as genomics and
diseases, the databases have over hundreds of entities
for chemical and biological data resources [22] [13]
[25]. Many web databases, such as Freebase and
DBPedia, typically have thousands of structured web
entities [4] [2]. Therefore, it is difficult to design a
set of static query forms to satisfy various ad-hoc
database queries on those complex databases.

Many existing database management and devel-
opment tools, such as EasyQuery [3], Cold Fu-
sion [1], SAP and Microsoft Access, provide several
mechanisms to let users create customized queries
on databases. However, the creation of customized
queries totally depends on users’ manual editing [16].
If a user is not familiar with the database schema
in advance, those hundreds or thousands of data
attributes would confuse him/her.

1.1 Our Approach
In this paper, we propose a Dynamic Query Form
system: DQF, a query interface which is capable of dy-
namically generating query forms for users. Different
from traditional document retrieval, users in database
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TABLE 1
Interactions Between Users and DQF

Query Form
Enrichment 1) DQF recommends a ranked list of

query form components to the user.
2) The user selects the desired form

components into the current query
form.

Query
Execution 1) The user fills out the current query

form and submit a query.
2) DQF executes the query and shows

the results.
3) The user provides the feedback

about the query results.

retrieval are often willing to perform many rounds of
actions (i.e., refining query conditions) before iden-
tifying the final candidates [7]. The essence of DQF
is to capture user interests during user interactions
and to adapt the query form iteratively. Each itera-
tion consists of two types of user interactions: Query
Form Enrichment and Query Execution (see Table 1).
Figure 1 shows the work-flow of DQF. It starts with a
basic query form which contains very few primary
attributes of the database. The basic query form is
then enriched iteratively via the interactions between
the user and our system until the user is satisfied with
the query results. In this paper, we mainly study the
ranking of query form components and the dynamic
generation of query forms.

1.2 Contributions
Our contributions can be summarized as follows:

• We propose a dynamic query form system which
generates the query forms according to the user’s
desire at run time. The system provides a solution
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Fig. 1. Flowchart of Dynamic Query Form

for the query interface in large and complex
databases.

• We apply F-measure to estimate the goodness of
a query form [30]. F-measure is a typical metric
to evaluate query results [33]. This metric is also
appropriate for query forms because query forms
are designed to help users query the database.
The goodness of a query form is determined
by the query results generated from the query
form. Based on this, we rank and recommend the
potential query form components so that users
can refine the query form easily.

• Based on the proposed metric, we develop effi-
cient algorithms to estimate the goodness of the
projection and selection form components. Here
efficiency is important because DQF is an online
system where users often expect quick response.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 defines the query
form and introduces how users interact with our
dynamic query form. Section 4 defines a probabilistic
model to rank query form components. Section 5
describes how to estimate the ranking score. Section
6 reports experimental results, and finally Section 7
concludes the paper.

2 RELATED WORK

How to let non-expert users make use of the relational
database is a challenging topic. A lot of research
works focus on database interfaces which assist users
to query the relational database without SQL. QBE
(Query-By-Example) [36] and Query Form are two
most widely used database querying interfaces. At
present, query forms have been utilized in most
real-world business or scientific information systems.
Current studies and works mainly focus on how to
generate the query forms.
Customized Query Form: Existing database clients
and tools make great efforts to help developers design
and generate the query forms, such as EasyQuery [3],
Cold Fusion [1], SAP, Microsoft Access and so on.

They provide visual interfaces for developers to create
or customize query forms. The problem of those tools
is that, they are provided for the professional devel-
opers who are familiar with their databases, not for
end-users [16]. [17] proposed a system which allows
end-users to customize the existing query form at run
time. However, an end-user may not be familiar with
the database. If the database schema is very large, it is
difficult for them to find appropriate database entities
and attributes and to create desired query forms.
Automatic Static Query Form: Recently, [16] [18] pro-
posed automatic approaches to generate the database
query forms without user participation. [16] presented
a data-driven method. It first finds a set of data
attributes, which are most likely queried based on the
database schema and data instances. Then, the query
forms are generated based on the selected attributes.
[18] is a workload-driven method. It applies clustering
algorithm on historical queries to find the represen-
tative queries. The query forms are then generated
based on those representative queries. One problem of
the aforementioned approaches is that, if the database
schema is large and complex, user queries could
be quite diverse. In that case, even if we generate
lots of query forms in advance, there are still user
queries that cannot be satisfied by any one of query
forms. Another problem is that, when we generate
a large number of query forms, how to let users
find an appropriate and desired query form would
be challenging. A solution that combines keyword
search with query form generation is proposed in
[12]. It automatically generates a lot of query forms
in advance. The user inputs several keywords to find
relevant query forms from a large number of pre-
generated query forms. It works well in the databases
which have rich textual information in data tuples
and schemas. However, it is not appropriate when the
user does not have concrete keywords to describe the
queries at the beginning, especially for the numeric
attributes.
Autocompletion for Database Queries: In [26], [21],
novel user interfaces have been developed to assist the
user to type the database queries based on the query
workload, the data distribution and the database
schema. Different from our work which focuses on
query forms, the queries in their work are in the forms
of SQL and keywords.
Query Refinement: Query refinement is a common
practical technique used by most information retrieval
systems [15]. It recommends new terms related to
the query or modifies the terms according to the
navigation path of the user in the search engine. But
for the database query form, a database query is a
structured relational query, not just a set of terms.
Dynamic Faceted Search: Dynamic faceted search is
a type of search engines where relevant facets are
presented for the users according to their naviga-
tion paths [29] [23]. Dynamic faceted search engines
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are similar to our dynamic query forms if we only
consider Selection components in a query. However,
besides Selections, a database query form has other im-
portant components, such as Projection components.
Projection components control the output of the query
form and cannot be ignored. Moreover, designs of
Selection and Projection have inherent influences to
each other.
Database Query Recommendation: Recent studies
introduce collaborative approaches to recommend
database query components for database exploration
[20] [9]. They treat SQL queries as items in the col-
laborative filtering approach, and recommend similar
queries to related users. However, they do not con-
sider the goodness of the query results. [32] proposes
a method to recommend an alternative database query
based on results of a query. The difference from our
work is that, their recommendation is a complete
query and our recommendation is a query component
for each iteration.
Dynamic Data Entry Form: [11] develops an adaptive
forms system for data entry, which can be dynamically
changed according to the previous data input by the
user. Our work is different as we are dealing with
database query forms instead of data-entry forms.
Active Feature Probing: Zhu et al. [35] develop the
active featuring probing technique for automatically
generating clarification questions to provide appro-
priate recommendations to users in database search.
Different from their work which focuses on finding
the appropriate questions to ask the user, DQF aims
to select appropriate query components.

3 QUERY FORM INTERFACE

3.1 Query Form
In this section we formally define the query form.
Each query form corresponds to an SQL query tem-
plate.

Definition 1: A query form F is defined as a tuple
(AF , RF , σF , ◃▹ (RF )), which represents a database
query template as follows:

F = (SELECT A1, A2, ..., Ak

FROM ◃▹ (RF ) WHERE σF ),

where AF = {A1, A2, ..., Ak} are k attributes for
projection, k > 0. RF = {R1, R2, ..., Rn} is the set of
n relations (or entities) involved in this query, n > 0.
Each attribute in AF belongs to one relation in RF .
σF is a conjunction of expressions for selections (or
conditions) on relations in RF . ◃▹ (RF ) is a join
function to generate a conjunction of expressions for
joining relations of RF .

In the user interface of a query form F , AF is
the set of columns of the result table. σF is the set
of input components for users to fill. Query forms
allow users to fill parameters to generate different
queries. RF and ◃▹ (RF ) are not visible in the user

interface, which are usually generated by the system
according to the database schema. For a query form F ,
◃▹ (RF ) is automatically constructed according to the
foreign keys among relations in RF . Meanwhile, RF

is determined by AF and σF . RF is the union set of
relations which contains at least one attribute of AF

or σF . Hence, the components of query form F are
actually determined by AF and σF . As we mentioned,
only AF and σF are visible to the user in the user
interface. In this paper, we focus on the projection and
selection components of a query form. Ad-hoc join
is not handled by our dynamic query form because
join is not a part of the query form and is invisible
for users. As for ”Aggregation” and ”Order by” in
SQL, there are limited options for users. For example,
”Aggregation” can only be MAX, MIN, AVG, and so
on; and ”Order by” can only be ”increasing order”
and ”decreasing order”. Our dynamic query form
can be easily extended to include those options by
implementing them as dropdown boxes in the user
interface of the query form.

3.2 Query Results
To decide whether a query form is desired or not,
a user does not have time to go over every data in-
stance in the query results. In addition, many database
queries output a huge amount of data instances. In
order to avoid this “Many-Answer” problem [10], we
only output a compressed result table to show a high-
level view of the query results first. Each instance in
the compressed table represents a cluster of actual
data instances. Then, the user can click through in-
terested clusters to view the detailed data instances.
Figure 2 shows the flow of user actions. The com-
pressed high-level view of query results is proposed
in [24]. There are many one-pass clustering algorithms
for generating the compressed view efficiently [34],
[5]. In our implementation, we choose the incremental
data clustering framework [5] because of the efficiency
issue. Certainly, different data clustering methods
would have different compressed views for the users.
Also, different clustering methods are preferable to
different data types. In this paper, clustering is just to
provide a better view of the query results for the user.
The system developers can select a different clustering
algorithm if needed.

Fig. 2. User Actions

Another important usage of the compressed view is
to collect the user feedback. Using the collected feed-
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back, we can estimate the goodness of a query form
so that we could recommend appropriate query form
components. In real world, end-users are reluctant
to provide explicit feedback [19]. The click-through
on the compressed view table is an implicit feedback
to tell our system which cluster (or subset) of data
instances is desired by the user. The clicked subset is
denoted by Duf . Note that Duf is only a subset of
all user desired data instances in the database. But
it can help our system generate recommended form
components that help users discover more desired
data instances. In some recommendation systems and
search engines, the end-users are also allowed to
provide the negative feedback. The negative feedback
is a collection of the data instances that are not desired
by the users. In the query form results, we assume
most of the queried data instances are not desired
by the users because if they are already desired, then
the query form generation is almost done. Therefore,
the positive feedback is more informative than the
negative feedback in the query form generation. Our
proposed model can be easily extended for incorpo-
rating the negative feedback.

4 RANKING METRIC

Query forms are designed to return the user’s de-
sired result. There are two traditional measures to
evaluate the quality of the query results: precision and
recall [30]. Query forms are able to produce different
queries by different inputs, and different queries can
output different query results and achieve different
precisions and recalls, so we use expected precision and
expected recall to evaluate the expected performance
of the query form. Intuitively, expected precision is the
expected proportion of the query results which are
interested by the current user. Expected recall is the
expected proportion of user interested data instances
which are returned by the current query form. The
user interest is estimated based on the user’s click-
through on query results displayed by the query form.
For example, if some data instances are clicked by
the user, these data instances must have high user
interests. Then, the query form components which
can capture these data instances should be ranked
higher than other components. Next we introduce
some notations and then define expected precision
and recall.
Notations: Table 2 lists the symbols used in this paper.
Let F be a query form with selection condition σF and
projection attribute set AF . Let D be the collection
of instances in ◃▹ (RF ). N is the number of data
instances in D. Let d be an instance in D with a set
of attributes A = {A1, A2, ..., An}, where n = |A|.
We use dAF

to denote the projection of instance d on
attribute set AF and we call it a projected instance.
P (d) is the occurrence probability of d in D. P (σF |d)
is the probability of d satisfies σF . P (σF |d) ∈ {0, 1}.

TABLE 2
Symbols and Notations

F query form
RF set of relations involved in F
A set of all attributes in ◃▹ (RF )
AF set of projection attributes of query form F
Ar(F ) set of relevant attributes of query form F
σF set of selection expressions of query form F
OP set of relational operators in selection
d data instance in ◃▹ (RF )
D the collection of data instances in ◃▹ (RF )
N number of data instances in D
dA1 data instance d projected on attribute set A1

DA1 set of unique values D projected on attribute set
A1

Q database query
DQ results of Q
Duf user feedback as clicked instances in DQ

α fraction of instances desired by users

P (σF |d) = 1 if d is returned by F and P (σF |d) = 0
otherwise.

Since query form F projects instances to attribute
set AF , we have DAF

as a projected database and
P (dAF ) as the probability of projected instance dAF

in the projected database. Since there are often dupli-
cated projected instances, P (dAF ) may be greater than
1/N . Let Pu(d) be the probability of d being desired
by the user and Pu(dAF ) be the probability of the user
being interested in a projected instance. We give an
example below to illustrate those notations.

TABLE 3
Data Table

ID C1 C2 C3 C4 C5

I1 a1 b1 c1 20 1
I2 a1 b2 c2 20 100
I3 a1 b2 c3 30 99
I4 a1 b1 c4 20 1
I5 a1 b3 c4 10 2

Example 1: Consider a query form Fi with one re-
lational data table shown in Table 3. There are 5
data instances in this table, D = {I1, I2, ..., I5}, with
5 data attributes A = {C1, C2, C3, C4, C5}, N = 5.
Query form Fi executes a query Q as “SELECT C2,

C5 FROM D WHERE C2 = b1 OR C2 = b2”. The query
result is DQ = {I1, I2, I3, I4} with projected on C2

and C5. Thus P (σFi |d) is 1 for I1 to I4 and is zero
for I5. Instance I1 and I4 have the same projected
values so we can use I1 to represent both of them
and P (I1C2,C5

) = 2/5.
Metrics: We now describe the two measures expected
precision and expected recall for query forms.

Definition 2: Given a set of projection attributes A
and a universe of selection expressions σ, the expected
precision and expected recall of a query form F=(AF ,
RF , σF , ◃▹ (RF )) are PrecisionE(F ) and RecallE(F )
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respectively, i.e.,

PrecisionE(F ) =

∑
d∈DAF

Pu(dAF
)P (dAF

)P (σF |d)N∑
d∈DAF

P (dAF
)P (σF |d)N

,

(1)

RecallE(F ) =

∑
d∈DAF

Pu(dAF )P (dAF )P (σF |d)N
αN

,

(2)
where AF ⊆ A, σF ∈ σ, and α is the fraction of in-
stances desired by the user, i.e., α =

∑
d∈D Pu(d)P (d).

The numerators of both equations represent the
expected number of data instances in the query result
that are desired by the user. In the query result,
each data instance is projected to attributes in AF . So
Pu(dAF ) represents the user interest on instance d in
the query result. P (dAF

)N is the expected number of
rows in D that the projected instance dAF represents.
Further, given a data instance d ∈ D, d being desired
by the user and d satisfying σF are independent.
Therefore, the product of Pu(dAF

) and P (σF |d) can
be interpreted as the probability of d being desired by
the user and meanwhile d being returned in the query
result. Summing up over all data instances gives the
expected number of data instance in the query result
being desired by the user.

Similarly, the denominator of Eq.(1) is simply the
number of instances in the query result. The denom-
inator of Eq.(2) is the expected number of instances
desired by the user in the whole database. In both
equations N cancels out so we do not need to con-
sider N when estimating precision and recall. The
probabilities in these equations can be estimated using
methods described in Section 5. α =

∑
d∈D Pu(d)P (d)

is the fraction of instances desired by user. P (d) is
given by D. Pu(d) could be estimated by the method
described in Section 5.1.

For example, suppose in Example 1, after projecting
on C2, C5, there are only 4 distinct instances I1, I2, I3,
and I5 (I4 has the same projected values as I1). The
probability of these projected instances are 0.4, 0.2, 0.2,
and 0.2, respectively. Suppose Pu for I2 and I3 are 0.9
and Pu for I1 and I5 are 0.03. The expected precision
equals 0.03×0.4+0.9×0.2+0.9×0.2+0

0.4+0.2+0.2+0 = 0.465. Suppose α =
0.4, then the expected recall equals (0.03× 0.4+ 0.9×
0.2 + 0.9× 0.2 + 0)/0.4= 0.93.

Considering both expected precision and expected re-
call, we derive the overall performance measure, ex-
pected F-Measure as shown in Equation 3. Note that β
is a constant parameter to control the preference on
expected precision or expected recall.

Definition 3: Given a set of projection attributes A
and an universe of selection expressions σ, the expected
F-Measure of a query form F=(AF , RF , σF , ◃▹ (RF ))
is FScoreE(F ), i.e.,

FScoreE(F )

=
(1 + β2) · PrecisionE(F ) ·RecallE(F )

β2 · PrecisionE(F ) +RecallE(F )
.

Problem Definition: In our system, we provide a
ranked list of query form components for the user.
Problem 1 is the formal statement of the ranking
problem.

Problem 1: Let the current query form be Fi and the
next query form be Fi+1, construct a ranking of all
candidate form components, in descending order of
FScoreE(Fi+1), where Fi+1 is the query form of Fi

enriched by the corresponding form component.
FScoreE(Fi+1) is the estimated goodness of the

next query form Fi+1. Since we aim to maxi-
mize the goodness of the next query form, the
form components are ranked in descending order of
FScoreE(Fi+1). In the next section, we will discuss
how to compute the FScoreE(Fi+1) for a specific form
component.

5 ESTIMATION OF RANKING SCORE

5.1 Ranking Projection Form Components

DQF provides a two-level ranked list for projection
components. The first level is the ranked list of en-
tities. The second level is the ranked list of attributes
in the same entity. We first describe how to rank each
entity’s attributes locally, and then describe how to
rank entities.

5.1.1 Ranking Attributes

Suggesting projection components is actually suggest-
ing attributes for projection. Let the current query
form be Fi, the next query form be Fi+1. Let AFi =
{A1, A2, ..., Aj}, and AFi+1 = AFi∪{Aj+1}, j+1 ≤ |A|.
Aj+1 is the projection attribute we want to suggest for
the Fi+1, which maximizes FScoreE(Fi+1). From the
Definition 3, we obtain FScoreE(Fi+1) as follows:

FScoreE(Fi+1)

=(1 + β2) · PrecisionE(Fi+1) ·RecallE(Fi+1)

β2 · PrecisionE(Fi+1) +RecallE(Fi+1)

=
(1 + β2) ·

∑
d∈DAFi+1

Pu(dAFi+1
)P (dAFi+1

)P (σFi+1
|d)∑

d∈D P (dAFi+1
)P (σFi+1 |d) + β2α

.

(3)

Note that adding a projection component Aj+1 does
not affect the selection part of Fi. Hence, σFi+1 = σFi

and P (σFi+1 |d) = P (σFi |d). Since Fi is already used
by the user, we can estimate P (dAFi+1

)P (σFi+1 |d) as
follows. For each query submitted for form Fi, we
keep the query results including all columns in RF .
Clearly, for those instances not in query results their
P (σFi+1 |d) = 0 and we do not need to consider them.
For each instance d in the query results, we simply
count the number of times they appear in the results
and P (dAFi+1

)P (σFi+1 |d) equals the occurrence count
divided by N .
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Now we only need to estimate Pu(dAFi+1
). As for

the projection components, we have:

Pu(dAFi+1
) = Pu(dA1 , ..., dAj , dAj+1)

= Pu(dAj+1 |dAFi
)Pu(dAFi

). (4)

Pu(dAFi
) in Eq.(4) can be estimated by the user’s

click-through on results of Fi. The click-through
Duf ⊆ D is a set of data instances which are clicked
by the user in previous query results. We apply kernel
density estimation method to estimate Pu(dAFi

). Each
db ∈ Duf represents a Gaussian distribution of the
user’s interest. Then,

Pu(dAFi
) =

1

|Duf |
∑

x∈Duf

1√
2πσ2

exp(−
d(dAFi

, xAFi
)2

2σ2
),

where d(·, ·) denotes the distance between two data in-
stances, σ2 is the variance of Gaussian models. For nu-
merical data, the Euclidean distance is a conventional
choice for distance function. For categorical data, such
as string, previous literatures propose several context-
based similarity functions which can be employed for
categorical data instances [14] [8].
Pu(dAj+1 |dAFi

) in Eq.(4) is not visible in the run-
time data, since dAj+1 has not been used before Fi+1.
We can only estimate it from other data sources.
We mainly consider the following two data-driven
approaches to estimate the conditional probability
Pu(dAj+1

|dAFi
).

• Workload-Driven Approach: The conditional proba-
bility of Pu(dAj+1 |dAFi

) could be estimated from
query results of historic queries. If a lot of users
queried attributes AFi and Aj+1 together on in-
stance d, then Pu(dAj+1 |dAFi

) must be high.
• Schema-Driven Approach: The database schema im-

plies the relations of the attributes. If two at-
tributes are contained by the same entity, then
they are more relevant.

Each of the two approaches has its own draw-
back. The workload-driven approach has the cold-
start problem since it needs a large amount of queries.
The schema-driven approach is not able to identify
the difference of the same entity’s attributes. In our
system, we combined the two approaches as follows:

Pu(dAj+1 |dAFi
)

= (1− λ)Pb(dAj+1 |dAFi
) + λsim(Aj+1,AFi),

where Pb(dAj+1 |dAFi
) is the probability estimated

from the historic queries, sim(Aj+1,AFi
) is the sim-

ilarity between Aj+1 and AFi estimated from the
database schema, and λ is a weight parameter in
[0, 1]. λ is utilized to balance the workload-driven
estimation and schema-driven estimation. Note that

sim(Aj+1,AFi) = 1−
∑

A∈AFi
d(Aj+1, A)

|AFi | · dmax
,

where d(Aj+1, A) is the schema distance between the
attribute Aj+1 and A in the schema graph, dmax is the

diameter of the schema graph. The idea of considering
a database schema as a graph is initially proposed
by [16]. They proposed a PageRank-like algorithm to
compute the importance of an attribute in the schema
according to the schema graph. In this paper, we
utilize the schema graph to compute the relevance of
two attributes. A database schema graph is denoted
by G = (R,FK, ξ,A), in which R is the set of nodes
representing the relations, A is the set of attributes,
FK is the set of edges representing the foreign keys,
and ξ : A −→ R is an attribute labeling function to
indicate which relation contains the attribute. Based
on the database schema graph, the schema distance is
defined as follows.

Definition 4: Schema Distance Given two attributes
A1,A2 with a database schema graph G=(R,FK,ξ,A),
A1 ∈ A, A2 ∈ A, the schema distance between A1 and
A2 is d(A1, A2), which is the length of the shortest
path between node ξ(A1) and node ξ(A2).

5.1.2 Ranking Entities
The ranking score of an entity is just the averaged
FScoreE(Fi+1) of that entity’s attributes. Intuitively,
if one entity has many high score attributes, then it
should have a higher rank.

5.2 Ranking Selection Form Components

The selection attributes must be relevant to the current
projected entities, otherwise that selection would be
meaningless. Therefore, the system should first find
out the relevant attributes for creating the selection
components. We first describe how to select relevant
attributes and then describe a naive method and a
more efficient one-query method to rank selection
components.

5.2.1 Relevant Attribute Selection
The relevance of attributes in our system is measured
based on the database schema as follows.

Definition 5: Relevant Attributes Given a database
query form F with a schema graph G=(R,FK,ξ,A),
the relevant attributes is: Ar(F ) = {A|A ∈ A, ∃Aj ∈
AF , d(A,Aj) ≤ t}, where t is a user-defined threshold
and d(A,Aj) is the schema distance defined in Defi-
nition 4.
The choice of t depends on how compact of the
schema is designed. For instance, some databases put
all attributes of one entity into a relation, then t could
be 1. Some databases separate all attributes of one
entity into several relations, then t could be greater
than 1. Using the depth-first traversing of the database
schema graph, Ar(F ) can be obtained in O(|Ar(F )|·t).

5.2.2 Ranking Selection Components
For enriching selection form components of a query
form, the set of projection componentsAF is fixed, i.e.,
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AFi+1 = AFi . Therefore, FScoreE(Fi+1) only depends
on σFi+1 .

For the simplicity of the user interface, most query
forms’ selection components are simple binary rela-
tions in the form of “Aj op cj”, where Aj is an at-
tribute, cj is a constant and op is a relational operator.
The op operator could be ‘=’, ‘≥’ ‘≤’ and so on. In
each cycle, the system provides a ranked list of such
binary relations for users to enrich the selection part.
Since the total number of binary relations are so large,
we only select the best selection component for each
attribute.

For attribute As, As ∈ Ar(F ), let σFi+1 = σFi ∪ {s},
s ∈ σ and s contains As. According to the formula of
FScoreE(Fi+1), in order to find the s ∈ σ that max-
imizes the FScoreE(Fi+1), we only need to estimate
P (σFi+1 |d) for each data instance d ∈ D. Note that, in
our system, σF represents a conjunctive expression,
which connects all elemental binary expressions by
AND. σFi+1 exists if and only if both σFi and s exist.
Hence, σFi+1 ⇔ σFi ∧ s. Then, we have:

P (σFi+1 |d) = P (σFi , s|d) = P (s|σFi , d)P (σFi |d). (5)

P (σFi |d) can be estimated by previous queries exe-
cuted on query form Fi, which has been discussed in
Section 5.1. P (s|σFi , d) is 1 if and only if d satisfies
σFi and s, otherwise it is 0. The only problem is to
determine the space of s, since we have to enumerate
all the s to compute their scores. Note that s is a
binary expression in the form of “As ops cs”, in which
As is fixed and given. ops ∈ OP where OP is a
finite set of relational operators, {=,≥,≤, ...}, and cs
belongs to the data domain of As in the database.
Therefore, the space of s is a finite set OP ×DAs . In
order to efficiently estimate the new FScore induced
by a query condition s, we propose the One-query
method in this paper. The idea of One-query is
simple: we sort the values of an attribute in s and
incrementally compute the FScore on all possible
values for that attribute.

To find the best selection component for the next
query form, the first step is to query the database
to retrieve the data instances. In Section 5.2, Eq. (5)
presents P (σFi+1 |d) depends on the previous query
conditions σFi

. If P (σFi
|d) = 0, P (σFi+1

|d) must be 0.
Hence, in order to compute the P (σFi+1 |d) for each
d ∈ D, we don’t need to retrieve all data instances in
the database. What we need is only the set of data
instances D′ ⊆ D such that each d ∈ D′ satisfies
P (σFi |d) > 0. So the selection of One-Query’s query
is the union of query conditions executed in Fi.

In addition, One-Query algorithm does not send
each query condition s to the database engine to
select data instances, which would be a heavy burden
for the database engine since the number of query
conditions is large. Instead, it retrieves the set of data
instances D′, and checks every data instance with

every query condition by its own. For this purpose,
the algorithm needs to know the values of all selection
attributes of D′. Hence, One-Query adds all the
selection attributes into the projections of the query.

Algorithm 1 describes the algorithm of the
One-Query’s query construction. The function
GenerateQuery is to generate the database query
based on the given set of projection attributes Aone

with selection expression σone.

Algorithm 1: QueryConstruction
Data: Q = {Q1, Q2, ..., } is the set of previous

queries executed on Fi.
Result: Qone is the query of One-Query
begin

σone ←− 0
for Q ∈ Q do

σone ←− σone ∨ σQ

Aone ←− AFi ∪ Ar(Fi)
Qone ←− GenerateQuery(Aone,σone)

When the system receives the result of the query
Qone from the database engine, it calls the second
algorithm of One-Query to find the best query con-
dition.

We first discuss the “≤” condition. The basic idea
of this algorithm is based on a simple property. For a
specific attribute As with a data instance d, given two
conditions:

s1 : As ≤ a1,
s2 : As ≤ a2,

and a1 ≤ a2, if s1 is satisfied, then s2 must be satisfied.
Based on this property, we could incrementally com-
pute the FScore of each query condition by scanning
one pass of data instances. There are 2 steps to do
this.

1) First, we sort the values of As in the order of
a1 ≤ a2 ≤ .... ≤ am, where m is the number
of As’s values. Let Daj denote the set of data
instances in which As’s value is equal to aj .

2) Then, we go through every data instance in
the order of As’s value. Let query condition
sj = “As ≤ aj” and its corresponding FScore
be fscorej . According to Eq. (3), fscorej can be
computed as

fscorej = (1 + β2) · nj/dj ,

nj =
∑

d∈DQone

Pu(dAFi
)P (dAFi

)P (σFi |d)P (si|d),

dj =
∑

d∈DQone

P (dAFi
)P (σFi

|d)P (si|d) + αβ2.

For j > 1, nj and dj can be calculated incremen-
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tally:

nj = nj−1 +∑
d∈Daj

Pu(dAFi
)P (dAFi

)P (σFi |d)P (sj |d),

dj = dj−1 +
∑

d∈Daj

P (dAFi
)P (σFi |d)P (sj |d).

Algorithm 2 shows the pseudocode for finding the
best “≤” condition.

Algorithm 2: FindBestLessEqCondition
Data: α is the fraction of instances desired by user,

DQone is the query result of Qone, As is the
selection attribute.

Result: s∗ is the best query condition of As.
begin

// sort by As into an ordered set Dsorted

Dsorted ←− Sort(DQone , As)
s∗ ←− ∅, fscore∗ ←− 0
n←− 0, d←− αβ2

for i← 1 to |Dsorted| do
d←− Dsorted[i]
s←− “As ≤ dAs”
// compute fscore of “As ≤ dAs”
n←− n+ Pu(dAFi

)P (dAFi
)P (σFi |d)P (s|d)

d←− d+ P (dAFi
)P (σFi |d)P (s|d)

fscore←− (1 + β2) · n/d
if fscore ≥ fscore∗ then

s∗ ←− s
fscore∗ ←− fscore

Complexity: As for other query conditions, such as
“=”, “≥”, we can also find similar incremental ap-
proaches to compute their FScore. They all share the
sorting result in the first step. And for the second
step, all incremental computations can be merged
into one pass of scanning DQone . Therefore, the time
complexity of finding the best query condition for an
attribute is O(|DQone |·|AFi |). Ranking every attribute’s
selection component is O(|DQone | · |AFi | · |Ar(Fi)|).

5.2.3 Diversity of Selection Components
Two selection components may have a lot of overlap
(or redundancy). For example, if a user is interested
in some customers with age between 30 and 45, then
two selection components: “age > 28” and “age > 29”
could get similar FScores and similar sets of data
instances. Therefore, there is a redundancy of the two
selections. Besides a high precision, we also require
the recommended selection components should have
a high diversity. diversity is a recent research topic
in recommendation systems and web search engines
[6] [28]. However, simultaneously maximizing the
precision and the diversity is an NP-Hard problem
[6]. It cannot be efficiently implemented in an inter-
active system. In our dynamic query form system,
we observe that most redundant selection components

are constructed by the same attribute. Thus, we only
recommend the best selection component for each
attribute.

6 EVALUATION

The goal of our evaluation is to verify the following
hypotheses:

H1: Is DQF more usable than existing approaches
such as static query form and customized
query form?

H2: Is DQF more effective to rank projection
and selection components than the baseline
method and the random method?

H3: Is DQF efficient to rank the recommended
query form components in an online user
interface?

6.1 System Implementation and Experimental
Setup
We implemented the dynamic query forms as a web-
based system using JDK 1.6 with Java Server Page.
The dynamic web interface for the query forms used
open-source javascript library jQuery 1.4. We used
MySQL 5.1.39 as the database engine. All experiments
were run using a machine with Intel Core 2 CPU
@2.83GHz, 3.5G main memory, and running on Win-
dows XP SP2. Figure 3 shows a system prototype.
Data sets: 3 databases: NBA 1, Green Car 2 and
Geobase 3 were used in our experiments. Table 4
shows a general description of those databases.

TABLE 4
Data Description

Name #Relations #Attribute #Instances
NBA 10 180 44,590
Green Car 1 17 2,187
Geobase 9 32 1,329

Form Generation Approaches: We compared three
approaches to generate query forms:

• DQF: The dynamic query form system proposed
in this paper.

• SQF: The static query form generation approach
proposed in [18]. It also uses query workload.
Queries in the workload are first divided into
clusters. Each cluster is converted into a query
form.

• CQF: The customized query form generation used
by many existing database clients, such as Mi-
crosoft Access, EasyQuery, ActiveQueryBuilder.

User Study Setup: We conducted a user study to eval-
uate the usability of our approach. We recruited 20

1. http://www.databasebasketball.com
2. http://www.epa.gov/greenvehicles
3. Geobase is a database of geographic information about the

USA, which is used in [16]
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Fig. 3. Screenshot of Web-based Dynamic Query Form

participants of graduate students, UI designers, and
software engineers. The system prototype is shown by
Figure 3. The user study contains 2 phases, a query
collection phase and a testing phase. In the collection
phase, each participant used our system to submit
some queries and we collected these queries. There
were 75 queries collected for NBA, 68 queries collected
for Green Car, and 132 queries for Geobase. These
queries were used as query workload to train our
system (see Section 5.1). In the second phase, we
asked each participant to complete 12 tasks (none of
these tasks appeared in the workload) listed in Table
5. Each participant used all three form generation
approaches to form queries. The order of the three
approaches were randomized to remove bias. We set
parameter λ = 0.001 in our experiments because our
databases collect a certain amount of historic queries
so that we mainly consider the probability estimated
from the historic queries.
Simulation Study Setup: We also used the collected
queries in a larger scale simulation study. We used
a cross-validation approach which partitions queries
into a training set (used as workload information) and
a testing set. We then reported the average perfor-
mance for testing sets.

6.2 User Study Results
Usability Metrics: In this paper, we employ some
widely used metrics in Human-Computer Interaction
and Software Quality for measuring the usability of a
system [31], [27]. These metrics are listed in Table 7.

TABLE 7
Usability Metrics

Metric Definition
ACmin The minimal number of action for users
AC The actual number of action performed by

users
ACratio ACmin/AC × 100.0%
FNmax The total number of provided UI function for

users to choose
FN The number of actual used UI function by

the user
FNratio FN/FNmax × 100%
Success The percentage of users successfully com-

pleted a specific task

In database query forms, one action means a mouse
click or a keyboard input for a textbox. ACmin is the
minimal number of actions for a querying task. One
function means a provided option for the user to use,
such as a query form or a form component. In a web
page based system, FNmax is the total number of
UI components in web pages explored by the user.
In this user study, each page at most contains 5 UI
components. The smaller ACmin, AC, FNmax, and
FN , the better the usability. Similarly, the higher the
ACratio, FNratio, and Success, the better the usability.

There is a trade-off between ACmin and FNmax. An
extreme case is that, we generate all possible query
forms in one web page, the user only needs to choose
one query form to finish his(or her) query task, so
ACmin is 1. However, FNmax would be the number



10

TABLE 5
Query Tasks

Task SQL Meaning
T1 SELECT ilkid, firstname, lastname FROM players Find all NBA players’ ID and full names.
T2 SELECT p.ilkid, p.firstname, p.lastname FROM players

p, player_playoffs_career c WHERE p.ilkid = c.ilkid

AND c.minutes > 5000

Find players who have played more than 5000 minutes
in the playoff.

T4 SELECT t.team, t.location, c.firstname, c.lastname,

c.year FROM teams t, coaches c WHERE t.team=c.team AND

t.location = ‘Los Angeles’

Find the name of teams located in Los Angeles with their
coaches.

T5 SELECT Models, Hwy_MPG FROM cars WHERE City_MPG > 20 Find the high way MPG of cars whose city road MPG is
greater than 20.

T6 SELECT Models, Displ, Fuel FROM cars WHERE Sales_Area

= ‘CA’

Find the model, displacement and fuel of cars which is
sold in California.

T7 SELECT Models, Displ FROM cars WHERE Veh_Class = ‘SUV’ Find the displacement of all SUV cars.
T8 SELECT Models FROM cars WHERE Drive = ‘4WD’ Find all 4 wheel-driven cars.
T9 SELECT t0.population FROM city t0 WHERE t0.state =

’california’

Find all cities in California with the population of each
city.

T10 SELECT t1.state, t0.area FROM state t0, border t1

WHERE t1.name = ’wisconsin’ and t0.area > ’80000’ and

t0.name = t1.name

Find the neighbor states of Wisconsin whose area is
greater than 80,000 square miles.

T11 SELECT t0.name, t0.length FROM river t0 WHERE t0.state

= ’illinois’

Find all rivers across Illinois with each river’s length.

T12 SELECT t0.name, t0.elevation, t0.state FROM mountain

t0 WHERE t0.elevation > ’5000’

Find all mountains whose elevation is greater than 5000
meters and each mountain’s state.

of all possible query forms with their components,
which is a huge number. On the other hand, if users
have to interact a lot with a system, that system would
know better about the user’s desire. In that case, the
system would cut down many unnecessary functions,
so that FNmax could be smaller. But ACmin would be
higher since there are a lot of user interactions.
User Study Analysis: Table 6 shows the average result
of the usability experiments for those query tasks. As
for SQF, we generated 10 static query forms based on
the collected user queries for each database (i.e., 10
clusters were generated on the query workload).

The results show that users did not accomplish
querying tasks by SQF. The reason is that, SQF is
built from the query workload and may not be able
to answer ad hoc queries in the query tasks. E.g., SQF
does not contain any relevant attributes for query task
T3 and T11, so users failed to accomplish the queries
by SQF.

TABLE 8
Statistical Test on FNmax ( with CQF)

Task T1 T4 T5 T10 T11 T12
P Value 0.0106 <0.0001 <0.0001 0.0132 <0.0001 <0.0001

TABLE 9
Statistical Test on AC (with CQF)

Task T2 T3 T4 T6 T8
P Value 0.0199 0.0012 0.0190 0.0199 0.0179

DQF and CQF are capable of assisting users finish
all querying tasks. In 11 of those 12 tasks, DQF has a
smaller FNmax than CQF. We conduct statistical tests
(t-tests) on those 11 tasks with α=0.05, and find that

6 of them are statistically significant. Table 8 shows
those 6 tasks with their P values. As for AC, DQF’s
average values are smaller than CQF’s in all 12 tasks,
and 5 tasks have statistically significant difference
(α=0.05). Table 9 shows the 5 tasks with their P values.
The reason why DQF outperforms CQF in some tasks
is that, CQF does not provide any intelligent assistance
for users to create their query forms. For each form
component, the user has to enumerate almost all the
entities and attributes to find an appropriate form
component for the query form. On the contrary, DQF
computes ranked lists of potential query form com-
ponents at each iteration to assist the user. In those
tasks, the user found desired entities and attributes at
the top of those ranked lists. Therefore, DQF cut down
many unnecessary functions shown to the user.

Overall, from the usability aspect, SQF requires
the minimal user actions but may not satisfy ad-hoc
user queries. It also tends to generate forms with
functions not used by the current user. CQF is capable
of satisfying ad-hoc query, but it is difficult for users
to explore the entire database and search appropriate
form components.

6.3 Static vs. Dynamic Query Forms
If a query task is covered by one historical queries
in history, then SQF built on those historical queries
can satisfy that query task. But the costs of using SQF
and DQF to accomplish that task are different. Form-
Complexity was proposed in [18] to evaluate the cost
of using a query form. It is the sum of the number
of selection components, projection components, and
relations, as shown below:

Form− Complexity(F ) = |AF |+ |σF |+ |RF |.
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TABLE 6
Usability Results

Task Query Form ACmin AC ACratio FNmax FN FNratio Success

T1
DQF 6 6.7 90.0% 40.0 3 7.5% 100.0%
CQF 6 7.0 85.7% 60.0 3 5% 100.0%
SQF 1 1.0 100.0% 35.0 3 8.6% 44.4%

T2
DQF 7 7.7 91.0% 65.0 4 6.2% 100.0%
CQF 8 10.0 80.0% 86.7 4 4.6% 100.0%
SQF 1 1.0 100.0% 38.3 4 10.4% 16.7%

T3
DQF 10 10.7 93.5% 133.3 6 3.8% 100.0%
CQF 12 13.3 90.2% 121.7 6 4.9% 100.0%
SQF 1 N/A N/A N/A 6 N/A 0.0%

T4
DQF 11 11.7 94.0% 71.7 6 8.4% 100.0%
CQF 12 13.3 90.2% 103.3 6 5.8% 100.0%
SQF 1 1.0 100.0% 70.0 6 8.6% 16.7%

T5
DQF 5 5.7 87.7% 28.3 3 10.6% 100.0%
CQF 6 6.7 90.0% 56.7 3 5.3% 100.0%
SQF 1 1.0 100.0% 10 3 30.0% 66.7%

T6
DQF 7 7.7 91.0% 61.7 4 6.5% 100.0%
CQF 8 10 80.0% 61.7 4 6.5% 100.0%
SQF 1 1 100.0% 23.3 4 17.2% 41.7%

T7
DQF 5 6.0 83.3% 48.3 3 6.2% 100.0%
CQF 6 6.7 90.0% 50.0 3 6.0% 100.0%
SQF 1 1.0 100.0% 18.3 3 16.4% 44.4%

T8
DQF 3 3.3 91.0% 21.7 2 9.2% 100.0%
CQF 4 4.7 85.1% 26.7 2 7.5% 100.0%
SQF 1 1.0 100.0% 38.3 2 5.2% 66.7%

T9
DQF 5 6.3 79.3% 31.7 3 9.5% 100.0%
CQF 6 6.7 90.0% 36.7 3 8.2% 100.0%
SQF 1 1.0 100.0% 106.7 3 2.8% 66.7%

T10
DQF 6 6.7 90.0% 43.3 4 9.2% 100.0%
CQF 8 8.7 92.0% 63.3 4 6.3% 100.0%
SQF 1 1.0 100.0% 75.0 4 5.3% 33.3%

T11
DQF 5 6.3 79.4% 36.7 3 8.2% 100.0%
CQF 6 6.7 90.0% 50.0 3 6.0% 100.0%
SQF 1 N/A N/A N/A 3 N/A 0.0%

T12
DQF 7 7.7 91.0% 46.7 4 8.6% 100.0%
CQF 8 10.0 80.0% 85.0 4 4.7% 100.0%
SQF 1 1.0 100.0% 31.7 4 12.6% 25.0%

On the premise of satisfying all users’ queries, the
complexities of query forms should be as small as
possible. DQF generates one customized query form
for each query. The average form complexity is 8.1 for
NBA, 4.5 for Green Car and 6.7 for Geobase. But for
SQF, the complexity is 30 for NBA and 16 for Green
Car (2 static query forms). This result shows that,
in order to satisfy various query tasks, the statically
generated query form has to be more complex.

6.4 Effectiveness

We compare the ranking function of DQF with two
other ranking methods: the baseline method and the
random method. The baseline method ranks projec-
tion and selection attributes in ascending order of
their schema distance (see Definition 4) to the current
query form. For the query condition, it chooses the
most frequent used condition in the training set for
that attribute. The random method randomly suggests
one query form component. The ground truth of the
query form component ranking is obtained from the
query workloads and stated in Section 6.1.
Ranking projection components: Ranking score is a
supervised method to measure the accuracy of the

recommendation. It is obtained by comparing the
computed ranking with the optimal ranking. In the
optimal ranking, the actual selected component by the
user is ranked first. So ranking score evaluates how far
away the actual selected component is ranked from
the first. The formula of ranks score is computed as
follows:

RankScore(Q,Aj) =
1

log(r̂(Aj)) + 1
,

where Q is a test query, Aj is the j-th projection
attribute of Q, r̂(Aj) is the computed rank of Aj .

Figure 4 shows the average ranking scores for all
queries in the workload. We compare three methods:
DQF, Baseline, and Random. The x-axis indicates the
portion of the training queries, and the rest queries
are used as testing queries. The y-axis indicates the
average ranking scores among all the testing queries.
DQF always outperforms the baseline method and
random method. The gap also grows as the portion
of training queries increases because DQF can better
utilize the training queries.
Ranking selection components: F-Measure is uti-
lized to measure ranking of selection components.
Intuitively, if the query result obtained by using the
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(a) Ranking Scores on NBA Data

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Training Queries Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra

g
e
 R

a
n
k
in

g
 S

c
o
re

DQF
Baseline
Random

(b) Ranking Scores on Green Car Data
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(c) Ranking Scores on Geobase Data

Fig. 4. Ranking Scores of Suggested Selection Components

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Feedback Ratio

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
v
e
ra

g
e
 F

-M
e
a
su

re

DQF
Baseline
Random

(a) Average F-Measure for NBA Data (Top
5 Ranked Components)
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(b) Average F-Measure on Green Car Data
(Top 5 Ranked Components)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Feedback Ratio

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
v
e
ra

g
e
 F

-M
e
a
su

re

DQF
Baseline
Random

(c) Average F-Measure on Geobase Data
(Top 3 Ranked Components)

Fig. 5. Average F-Measure of Suggested Selection Components
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(b) Running time on Green Car Data
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(c) Running time on Geobase Data

Fig. 6. Scalability of Ranking Selection Components

suggested selection component is closer to the actual
query result, the F-Measure should be higher. For
a test query Q, we define the ground truth as the
set of data instances returned by the query Q. We
also constructed a query Q̂, where Q̂ is identical to
Q except for the last selection component. The last
selection component of Q̂ is constructed by the top
ranked component returned by one of the three rank-
ing methods. We then compared the results of Q̂ to
the ground truth to compute F-Measure. We randomly
selected half of queries in the workload as training set
and the rest as testing. Since DQF uses user’s click-
through as implicit feedback, we randomly selected
some small portion (Feedback Ratio) of the ground
truth as click-through.

Figure 5 shows the F-Measure (β=2) of all methods
on the data sets. The x-axis of those figures indicates

the Feedback Ratio over the whole ground truth.
The y-axis is the average F-Measure value among all
collected queries. From those figures, DQF even per-
forms well when there is no click-through information
( Feedback Ratio=0).

6.5 Efficiency

The run-time cost of ranking projection and selection
components for DQF depends on the current form
components and the query result size. Thus we se-
lected 4 complex queries with large result size for
each data set. Table 10, Table 11 and Table 12 list
these queries, where those join conditions are implicit
inner joins and written in WHERE clause. We varied
the query result size by query paging in MySQL
engine. The running times of ranking projection are
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all less than 1 millisecond, since DQF only computes
the schema distance and conditional probabilities of
attributes. Figure 6 shows the time for DQF to rank
selection components for queries on the data sets. The
results show that the execution time grows approxi-
mately linearly with respect to the query result size.
The execution time is between 1 to 3 seconds for NBA
when the results contain 10000 records, less than 0.11
second for Green Car when the results contain 2000
records, and less than 0.5 second for Geobase when
results contain 10000 records. So DQF can be used in
an interactive environment.

TABLE 10
NBA’s Queries in Scalability Test

Query SQL
Q1 SELECT t0.coachid, t2.leag, t2.location,

t2.team, t3.d_blk, t1.fta, t0.season_win,

t1.fgm FROM coaches t0, player_regular_season

t1, teams t2, team_seasons t3 WHERE t0.team =

t1.team and t1.team = t3.team and t3.team =

t2.team

Q2 SELECT t2.lastname, t2.firstname, t1.won

FROM player_regular_season t0, team_seasons

t1, players t2 WHERE t1.team = t0.team and

t0.ilkid = t2.ilkid

Q3 SELECT t0.lastname, t0.firstname FROM players

t0, player_regular_season t1, team_seasons

t2 WHERE t2.team = t1.team and t1.ilkid =

t0.ilkid

Q4 SELECT t0.won, t3.name, t2.h_feet FROM

team_seasons t0, player_regular_season t1,

players t2, teams t3 WHERE t3.team = t0.team

and t0.team = t1.team and t1.ilkid = t2.ilkid

TABLE 11
Green Car’s Queries in Scalability Test

Query SQL
Q1 SELECT Underhood_ID, Displ, Hwy_MPG FROM cars

WHERE City_MPG <= ’51.0’

Q2 SELECT Model FROM cars WHERE Cyl <= ’12.0’

Q3 SELECT Model, Underhood_ID, Trans FROM cars

WHERE City_MPG <= ’30.0’ and Cmb_MPG <= ’34.0’

Q4 SELECT Model FROM cars

7 CONCLUSION AND FUTURE WORK

In this paper we propose a dynamic query form
generation approach which helps users dynamically
generate query forms. The key idea is to use a proba-
bilistic model to rank form components based on user
preferences. We capture user preference using both
historical queries and run-time feedback such as click-
through. Experimental results show that the dynamic
approach often leads to higher success rate and sim-
pler query forms compared with a static approach.
The ranking of form components also makes it easier
for users to customize query forms. As future work,
we will study how our approach can be extended to
non relational data.

TABLE 12
Geobase’s Queries in Efficiency Test

Query SQL
Q1 SELECT t2.name, t0.name, t1.elevation,

t4.name, t5.name, t3.name, t3.area,

t4.population FROM road t0, mountain t1,

highest_point t2, lake t3, state t4, border

t5 WHERE t1.elevation = ’6194.0’ and t3.area

= ’82362.0’ and t2.elevation = ’6194.0’ and

t4.name = t2.state and t2.state = t1.state

Q2 SELECT t3.name, t5.name, t2.elevation,

t1.name, t4.name, t0.name FROM lake t0, state

t1, mountain t2, highest_point t3, border

t4, road t5 WHERE t2.elevation = ’6194.0’ and

t0.area = ’82362.0’ and t1.name = t3.state and

t3.state = t2.state

Q3 SELECT t4.name, t2.name, t3.elevation,

t0.name, t1.name, t5.name FROM state t0,

border t1, road t2, mountain t3, highest_point

t4, lake t5 WHERE t3.elevation = ’6194.0’ and

t0.name = t4.state and t4.state = t3.state

Q4 SELECT t0.elevation, t1.population, t2.state

FROM mountain t0, state t1, road t2 WHERE

t1.population < ’2.367E7’ and t0.state =

t1.name

As for the future work, we plan to develop multiple
methods to capture the user’s interest for the queries
besides the click feedback. For instance, we can add
a text-box for users to input some keywords queries.
The relevance score between the keywords and the
query form [12] can be incorporated into the ranking
of form components at each step.
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