
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 2, APRIL 2012 381

Optimal Source-Based Filtering of Malicious Traffic
Fabio Soldo, Student Member, IEEE, Katerina Argyraki, and Athina Markopoulou, Member, IEEE

Abstract—In this paper, we consider the problem of blocking ma-
licious traffic on the Internet via source-based filtering. In partic-
ular, we consider filtering via access control lists (ACLs): These are
already available at the routers today, but are a scarce resource be-
cause they are stored in the expensive ternary content addressable
memory (TCAM). Aggregation (by filtering source prefixes instead
of individual IP addresses) helps reduce the number of filters, but
comes also at the cost of blocking legitimate traffic originating from
the filtered prefixes. We show how to optimally choose which source
prefixes to filter for a variety of realistic attack scenarios and oper-
ators’ policies. In each scenario, we design optimal, yet computa-
tionally efficient, algorithms. Using logs from Dshield.org, we
evaluate the algorithms and demonstrate that they bring signifi-
cant benefit in practice.

Index Terms—Clustering algorithms, filtering, Internet,
network security.

I. INTRODUCTION

H OW CAN we protect our network infrastructure from
malicious traffic, such as scanning, malicious code

propagation, spam, and distributed denial-of-service (DDoS)
attacks? These activities cause problems on a regular basis,
ranging from simple annoyance to severe financial, operational,
and political damage to companies, organizations, and critical
infrastructure. In recent years, they have increased in volume,
sophistication, and automation, largely enabled by botnets,
which are used as the platform for launching these attacks.

Protecting a victim (host or network) from malicious traffic
is a hard problem that requires the coordination of several com-
plementary components, including nontechnical (e.g., business
and legal) and technical solutions (at the application and/or net-
work level). Filtering support from the network is a fundamental
building block in this effort. For example, an Internet service
provider (ISP) may use filtering in response to an ongoing DDoS
attack to block the DDoS traffic before it reaches its clients. An-
other ISP may want to proactively identify and block traffic car-
rying malicious code before it reaches and compromises vulner-
able hosts in the first place. In either case, filtering is a necessary
operation that must be performed within the network.
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Filtering capabilities are already available at routers today via
access control lists (ACLs). ACLs enable a router to match a
packet header against predefined rules and take predefined ac-
tions on the matching packets [1], and they are currently used
for enforcing a variety of policies, including infrastructure pro-
tection [2]. For the purpose of blocking malicious traffic, a filter
is a simple ACL rule that denies access to a source IP address
or prefix. To keep up with the high forwarding rates of modern
routers, filtering is implemented in hardware: ACLs are typi-
cally stored in ternary content addressable memory (TCAM),
which allows for parallel access and reduces the number of
lookups per forwarded packet. However, TCAM is more ex-
pensive and consumes more space and power than conventional
memory. The size and cost of TCAM puts a limit on the number
of filters, and this is not expected to change in the near future.1

With thousands or tens of thousands of filters per path, an ISP
alone cannot hope to block the currently witnessed attacks, not
to mention attacks from multimillion-node botnets expected in
the near future.

Consider the example shown in Fig. 1(a): An attacker com-
mands a large number of compromised hosts to send traffic to
a victim (say a Web server), thus exhausting the resources
of and preventing it from serving its legitimate clients. The
ISP of tries to protect its client by blocking the attack at the
gateway router . Ideally, should install one separate filter to
block traffic from each attack source. However, there are typi-
cally fewer filters than attack sources, hence aggregation is used,
i.e., a single filter (ACL) is used to block an entire source address
prefix. This has the desired effect of reducing the number of fil-
ters necessary to block all attack traffic, but also the undesired
effect of blocking legitimate traffic originating from the blocked
prefixes (we will call the damage that results from blocking le-
gitimate traffic “collateral damage”). Therefore, filter selection
can be viewed as an optimization problem that tries to block as
many attack sources with as little collateral damage as possible,
given a limited number of filters. Furthermore, several measure-
ment studies have demonstrated that malicious sources exhibit
temporal and spatial clustering [3]–[9], a feature that can be ex-
ploited by prefix-based filtering.

In this paper, we formulate a general framework for studying
source prefix filtering as a resource allocation problem. To the
best of our knowledge, optimal filter selection has not been ex-
plored so far, as most related work on filtering has focused on
protocol and architectural aspects. Within this framework, we

1A router linecard or supervisor-engine card typically supports a single
TCAM chip with tens of thousands of entries. For example, the Cisco Catalyst
4500, a midrange switch, provides a 64 000-entry TCAM to be shared among
all its interfaces (48–384). Cisco 12000, a high-end router used at the Internet
core, provides 20 000 entries that operate at line-speed per linecard (up to 4-Gb
Ethernet interfaces). The Catalyst 6500 switch can fit 16 K–32 K patterns and 2
K–4 K masks in the TCAM. Depending on how an ISP connects to its clients,
each individual client can typically use only part of these ACLs, i.e., a few
hundreds to a few thousands filters.
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Fig. 1. Example of a distributed attack. Let us assume that the gateway router�
has only two filters, �� and ��, available to block malicious traffic and protect
the victim � . It uses �� to block a single malicious source address (A) and ��

to block the entire source prefix �������, which contains three malicious sources
but also one legitimate source (B). Therefore, the selection of filter �� trades
off collateral damage (blocking B) for reduction in the number of filters (from
three to one). We note that both filters, �� and ��, are ACLs installed at the
same router �. (a) Actual network. (b) Hierarchy of source IP addresses and
prefixes.

formulate and solve five practical source-address filtering prob-
lems, depending on the attack scenario and the operator’s policy
and constraints. Our contributions are twofold. On the theoret-
ical side, filter selection optimization leads to novel variations
of the multidimensional knapsack problem. We exploit the spe-
cial structure of each problem and design optimal and compu-
tationally efficient algorithms. On the practical side, we provide
a set of cost-efficient algorithms that can be used both by op-
erators to block undesired traffic and by router manufacturers
to optimize the use of TCAM and eventually the cost of routers.
We use logs fromDshield.org to demonstrate that optimally
selecting which source prefixes to filter brings significant bene-
fits compared to nonoptimized filtering or to generic clustering
algorithms.

The outline of the rest of the paper is as follows. In Sec-
tion II, we formulate the general framework for optimal source
prefix filtering. In Section III, we study five specific problems
that correspond to different attack scenarios and operator
policies: blocking all addresses in a blacklist (BLOCK-ALL),
blocking some addresses in a blacklist (BLOCK-SOME),
blocking all/some addresses in a time-varying blacklist
(TIME-VARYING BLOCK-ALL/SOME), blocking flows
during a DDoS flooding attack to meet bandwidth constraints
(FLOODING), and distributed filtering across several routers
during flooding (DIST-FLOODING). For each problem, we
design an optimal, yet computationally efficient, algorithm
to solve it. In Section IV, we use data from Dshield.org
[10] to evaluate the performance of our algorithms in realistic
attack scenarios, and we demonstrate that they bring significant
benefit in practice. Section V discusses related work and puts
our work in perspective. Section VI concludes the paper.

II. PROBLEM FORMULATION AND FRAMEWORK

A. Terminology and Notation

Table I summarizes our terminology and notation.

TABLE I
SUMMARY OF NOTATION AND TERMINOLOGY

Source IP Addresses and Prefixes: Every IPv4 address is a
32-b sequence. We use standard IP/mask notation, i.e., we write

to indicate a prefix of length bits, where and can take
values and , respectively.
For brevity, when the meaning is obvious from the context, we
simply write to indicate prefix . We write to
indicate that address is within the 2 addresses covered
by prefix .

Blacklists and Whitelists: A blacklist is a set of unique
source IP addresses that send bad (undesired) traffic to the
victim. Similarly, a whitelist is a set of unique source IP
addresses that send good (legitimate) traffic to the victim. An
address may belong either to a blacklist (in which case we call
it a “bad” address) or a to whitelist (in which case we call it
a “good” address), but not to both. We use and to
indicate the number of addresses in and , respectively.
For brevity, we also use for the number of addresses
in the blacklist, which is the size of the most important input to
our problem.

Each address in a blacklist or a whitelist is assigned a
weight , indicating its importance. If is a bad address,
we assign it a negative weight , which indicates the
benefit from blocking ; if is a good address, we assign it
a positive weight , which indicates the damage from
blocking . The higher the absolute value of the weight, the
higher the benefit or damage and thus the preference to block
the address or not. The weight can have a different inter-
pretation depending on the filtering problem. For instance, it
can represent the amount of bad/good traffic originating from
the corresponding source address, or it can express policy: De-
pending on the amount of money gained/lost by the ISP when
blocking source address , an ISP operator can assign large
positive weights to its important customers that should never be
blocked, or large negative weights to the worst attack sources
that must definitely be blocked.

Creating blacklists and whitelists (i.e., identifying bad and
good addresses and assigning appropriate weights to them) is a
difficult problem on its own right, but orthogonal to this work.
We assume that the blacklist is provided by another module
(e.g., an intrusion detection system or historical data) as input to
our problem. The sources of legitimate traffic are also assumed
known—e.g., Web servers or ISPs typically keep historical data
and know their customers. If it is not explicitly given, we take
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a conservative approach and define the whitelist to include
all addresses that are not in .

Filters: We focus on filtering of source address prefixes. In
our context, a filter is an ACL rule that specifies that all packets
with a source IP address in prefix should be blocked. is
the maximum number of available filters, and it is given as input
to our problem. Filter optimization is meaningful only when

is much smaller than the size of the blacklist .
Otherwise, the optimal would be to block every single bad ad-
dress. is indeed the case in practice due to the size
and cost of the TCAM, as mentioned in Section I.

The decision variable is 1 if a filter is
assigned to block prefix , or 0 otherwise. A filter
blocks all 2 addresses in that range. Hence,

expresses the benefit from filter , whereas
expresses the collateral damage it

causes. An effective filter should have a large benefit and
low collateral damage .

Filtering Benefit and Collateral Damage: We define the
filtering benefit as , i.e., the sum
of the weights of the bad addresses whose traffic is blocked.
We define the collateral damage of a filtering solution as

, i.e., the sum of the weights of
the good addresses whose traffic is blocked.

B. Rationale and Overview of Filtering Problems

Given a set of bad and a set of good source addresses ( and
), a measure of their importance (the address weights ),

and a resource budget ( plus, possibly, other resources,
depending on the particular problem), the goal is to select
which source prefixes to filter so as to minimize the impact of
bad traffic and can be accommodated with the given resource
budget. Different variations of the problem can be formulated,
depending on the attack scenario and the victim network’s
policies and constraints: The network operator may want to
block all bad addresses or tolerate to leave some unblocked; the
attack may be of low rate or a flooding attack; filters may be
installed at one or several routers. At the core of each filtering
problem lies the following optimization:

(1)

s.t. (2)

(3)

(4)

Eq. (1) expresses the objective to minimize the total cost of
bad traffic, which consists of two parts: the collateral damage
(the terms with ) and the cost of leaving bad traffic un-
blocked (the terms with ). We use notation to
denote summation over all possible prefixes : ,

. Eq. (2) expresses the constraint on the number
of filters. Eq. (3) states that overlapping filters are mutually ex-
clusive, i.e., each bad address can be blocked at most once, oth-
erwise filtering resources are wasted. Eq. (4) lists the decision

variables corresponding to all possible prefixes and will be
omitted from now on for brevity.

Eq. (1)–(4) provide the general framework for filter-selec-
tion optimization. Different filtering problems can be written
as special cases, possibly with additional constraints. As we
discuss in Section V, these are all multidimensional knapsack
problems [11], which are, in general, NP-hard. The specifics
of each problem dramatically affect the complexity, which can
vary from linear to NP-hard.

In this paper, we formulate five practical filtering problems
and develop optimal, yet computationally efficient, algorithms
to solve them. Here, we summarize the rationale behind each
problem and outline our main results; the exact formulation and
detailed solution is provided in Section III.

BLOCK-ALL: Suppose a network operator has a blacklist
of size , a whitelist , and a weight assigned to each ad-
dress that indicates the amount of traffic originating from that
address. The total number of available filters is . The first
practical goal the operator may have is to install a set of fil-
ters that block all bad traffic so as to minimize the amount of
good traffic that is blocked. We design an optimal algorithm that
solves this problem at the lowest achievable complexity (lin-
early increasing with ).

BLOCK-SOME: A blacklist and a whitelist are given as be-
fore, but the operator is now willing to block only some, instead
of all, bad traffic, so as to decrease the amount of good traffic
blocked at the expense of leaving some bad traffic unblocked.
The goal now is to block only those prefixes that have the highest
impact and do not contain sources that generate a lot of good
traffic, so as to minimize the total cost in (1). We design an op-
timal, lowest-complexity (linearly increasing with ) algorithm
for this problem, as well.

TIME-VARYING BLOCK-ALL/SOME: Bad addresses may
change over time [4]: New sources may send malicious traffic
and, conversely, previously active sources may disappear
(e.g., when their vulnerabilities are patched). One way to
solve the dynamic versions of BLOCK-ALL (SOME) is to
run the algorithms we propose for the static versions for the
blacklist/whitelist pair at each time slot. However, given that
subsequent blacklists typically exhibit significant overlap [4],
it may be more efficient to exploit this temporal correlation
and incrementally update the filtering rules. We show that is it
possible to update the optimal solution, as new IPs are inserted
in or removed from the blacklist, in time.

FLOODING: In a flooding attack, such as the one shown in
Fig. 1, a large number of compromised hosts send traffic to the
victim and exhaust the victim’s access bandwidth. In this case,
our framework can be used to select the filtering rules that mini-
mize the amount of good traffic that is blocked while meeting the
access bandwidth constraint—in particular, the total bandwidth
consumed by the unblocked traffic should not exceed the band-
width of the flooded link, e.g., link G–V in Fig. 1. We prove that
this problem is NP-hard, and we design a pseudo-polynomial
algorithm that solves it optimally, with complexity that grows
linearly with the blacklist and whitelist size, i.e., .

DIST-FLOODING: All the above problems aim at installing
filters at a single router. However, a network operator may use
the filtering resources collaboratively across several routers to
better defend against an attack. Distributed filtering may also
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be enabled by the cooperation across several ISPs against a
common enemy. The question in both cases is not only which
prefixes to block, but also at which router to install the filters.
We study the practical problem of distributed filtering against a
flooding attack. We prove that the problem can be decomposed
into several FLOODING problems, which can be solved in a
distributed way.

III. FILTERING PROBLEMS AND ALGORITHMS

In this section, we provide the detailed formulation of each
problem and present the algorithm that solves it. We start by
defining the data structure that we use to represent the problem
and to develop our algorithms.

A. Data Structure for Representing Filtering Solutions

Definition 1 (LCP Tree): Given a set of addresses , we
define the Longest Common Prefix tree of , denoted by
LCP-tree , as the binary tree with the following properties:
1) each leaf represents a different address in , and there is a
leaf for each address in ; 2) each intermediate (nonleaf) node
represents the longest common prefix between the prefixes
represented by its two children.

The LCP-tree can be constructed from the complete bi-
nary tree (with root leaves at level 32 corresponding to all ad-
dresses , and intermediate nodes at level

corresponding to all prefixes of length ) by removing
the branches that do not have addresses in , and then by re-
moving nodes with a single child. It is a variation of the binary
(or unibit) trie [12], but does not have nodes with a single child.
The LCP-tree offers an intuitive way to represent sets of pre-
fixes that can block the addresses in set : Each node in the LCP
tree represents a prefix that can be blocked, hence we can rep-
resent a filtering solution as the pruned version of the LCP tree,
whose leaves are all and only the blocked prefixes.

Example 1: For instance, consider the LCP tree depicted in
Fig. 2, whose leaves correspond to bad addresses that we want to
block. One (expensive) solution is to use one filter to block each
bad address; thus the LCP tree is not pruned, and its leaves cor-
respond to the filters. Another feasible solution is to use three fil-
ters and block traffic from prefixes 0/1, 8/2, and 12/4; this can be
represented by the pruned version of the LCP tree that includes
the aforementioned prefixes as leaves. Yet another (rather rad-
ical) solution is to filter a single prefix (0/0) to block all traffic;
this can be represented by the pruned version of the LCP tree
that includes only its root.

Complexity: Given a list of addresses , we can build
the LCP-tree by performing insertions in a Patricia
trie [12]. To insert a string of bits, we need at most
comparisons. Thus, the worst-case complexity is ,
where (bits) is the length of a 32-b IPv4 address.

B. BLOCK-ALL

Problem Statement: Given: a blacklist , a whitelist ,
and the number of available filters ; select filters that block
all bad traffic and minimize collateral damage.

Formulation: We formulate this problem by making two ad-
justments to the general framework of (1)–(4). First, (1) be-
comes (5), which expresses the goal to minimize the collateral

Fig. 2. Example of LCP-tree����. Consider a blacklist
consisting of the following nine bad addresses: �� �
���������� ��������� ��������� ��������� �������	� �������
� ����������
���������� ����������. All remaining addresses are considered good. Each
leaf represents one address in the ��. Each intermediate node represents the
longest common prefix � covering all bad addresses in that subtree. At each
intermediate node �, we also show the collateral damage (i.e., number of good
addresses blocked) when we filter prefix � instead of filtering each of its
children. For instance, if we use two filters to block bad addresses 10.0.0.5/32
and 10.0.0.7/32, the collateral damage is 0; if, instead, we use one filter to
block prefix 10.0.0.4/30, we also block good address 10.0.0.6/32, i.e., we
cause collateral damage 1.

damage. Second, (3) becomes (7), which enforces the constraint
that every bad address should be blocked by exactly one filter,
as opposed to at most one filter in (3)

(5)

s.t. (6)

(7)

Characterizing an Optimal Solution: Our algorithm starts
from LCP-tree and outputs a pruned version of that LCP
tree. Hence, we start by proving that an optimal solution to
BLOCK-ALL can indeed be represented as a pruned version of
that LCP tree.

Proposition 3.1: An optimal solution to BLOCK-ALL can be
represented as a pruned subtree of LCP-tree with the same
root as LCP-tree , up to leaves, and each nonleaf node
having exactly two children.

Proof: We prove that, for each feasible solution to
BLOCK-ALL , there exists another feasible solution that:
1) can be represented as a pruned subtree of LCP-tree as
described in the proposition; and 2) whose collateral damage is
smaller or equal to ’s. This is sufficient to prove the proposi-
tion, since an optimal solution is also a feasible one.

Any filtering solution can be represented as a pruned
subtree of the full binary tree of all IP addresses [LCP-
tree ] with the same root and leaves cor-
responding to the filtered prefixes. is a feasible solution to
BLOCK-ALL, therefore uses up to filters, i.e., its tree
has up to leaves. Indeed, if this was not the case, (6)
would be violated and would not be a feasible solution.

Let us assume that the tree representing includes a prefix
that is not in LCP-tree . There are three possible cases.

1) includes no bad addresses. In this case, we can simply
remove from ’s tree (i.e., unblock ).
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2) Only one of ’s children includes bad addresses. In this
case, we can replace with the child node.

3) Both of ’s children contain bad addresses. In this case,
is already the longest common prefix of all bad addresses
in , thus already on the LCP-tree .

Clearly, each of these operations transforms feasible solution ,
which is assumed not to be on LCP-tree , into another fea-
sible solution with smaller or equal collateral damage but
on the LCP-Tree . We can repeat this process for all pre-
fixes that are in ’s tree but not in LCP-tree , until we
create a feasible solution that includes only prefixes from
LCP-tree and has smaller or equal collateral damage.

The only element missing to prove the proposition is to show
that, in the pruned LCP subtree that represents , each nonleaf
node has exactly two children. We show this by contradiction:
Suppose there exists a nonleaf node in our pruned LCP subtree
that has exactly one child. This can only result from pruning
out one child of a node in the LCP tree. This means that all the
bad addresses (leaves) in the subtree of this child node remain
unfiltered, which violates (7), but this is a contradiction because

is a feasible solution.
Algorithm: Algorithm 1, which solves BLOCK-ALL, con-

sists of two steps. First, we build the LCP tree from the input
blacklist . Second, in a bottom–up fashion, we compute

, i.e., the minimum collateral damage needed to
block all bad addresses in the subtree of prefix using at most

filters. Following a dynamic programming (DP) approach,
we can find the optimal allocation of filters in the subtree rooted
at prefix by finding a value and assigning filters to
the left subtree and to the right subtree, so as to minimize
collateral damage. The fact that BLOCK-ALL needs to filter
all bad addresses (leaves in the LCP tree) implies that at least
one filter must be assigned to the left and right subtree, i.e.,

. In other words, for every pair of sibling
nodes, (left) and (right), with common parent node , the
following recursive equation holds:

(8)

with boundary conditions for leaf and intermediate nodes

(9)

(10)

Once we compute for all prefixes in the LCP tree, we
simply read the value of the optimal solution, .
We also use auxiliary variables to keep track of the set
of prefixes used in the optimal solution. In lines 4 and 10 of
Algorithm 1, is initialized to the single prefix used. In
line 12, after computing the new cost, the corresponding set of
prefixes is updated: .

Theorem 3.2: Algorithm 1 computes the optimal solution
of problem BLOCK-ALL: the prefixes that are contained in
set are the optimal for (5)–(7).

Proof: Recall that denotes the value of the op-
timal solution of BLOCK-ALL with filters (i.e., the min-
imum collateral damage), while denotes the set of
filters selected in the optimal solution. Let and denote

Algorithm 1: Algorithm for Solving BLOCK-ALL

1: build LCP-tree
2: for all leaf nodes do
3:
4:
5: end for
6:
7: while do
8: for all node such that do
9:

10:
11:

12:
13: end for
14:
15: end while
16: return ,

the two children nodes (prefixes) of in the LCP-tree .
Finding the optimal allocation of filters to block all
addresses contained in (possibly all IP space) is equivalent
to finding the optimal allocation of filters to block all
addresses in , and prefixes for bad addresses in ,
such that . This is because prefixes and
jointly contain all bad addresses. Moreover, each of and
contains at least one bad address. Thus, at least one filter must
be assigned to each of them. If , i.e., there is only
one filter available, the only feasible solution is to select as
the prefix to filter out. The same argument recursively applies to
descendant nodes, until either we reach a leaf node, or we have
only one filter available. In these cases, the problem is trivially
solved by (9).

Complexity: The LCP-tree is a binary tree with
leaves. Therefore, it has intermediate nodes (pre-
fixes). Computing (8) for every node and for every value

involves solving subproblems,
one for every pair with complexity .
in (8) requires only the optimal solution at the sibling nodes,

. Thus, proceeding from the leaves to the
root, we can compute the optimal solution in .
In practice, the complexity is even lower since we do not
need to compute for all values , but only
for , where is the
number of the leaves in prefix in the LCP tree. Moreover, we
only need to compute entries for every prefix , s.t. we
cover all addresses in , which may require
for long prefixes in the LCP-tree.

Finally, we observe that the asymptotic complexity is
since and does not depend

on but only on the TCAM size. Thus, the time complexity
increases linearly with the number of bad addresses . This
is within a constant factor of the lowest achievable complexity
since we need to read all bad addresses at least once.
Although the above is a worst-case analysis, we confirmed in
simulation that the computation time in practice is very close
to that.
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C. BLOCK-SOME

Problem Statement: Given a blacklist , a whitelist ,
and the number of available filters , the goal is to select
filters so as to minimize the total cost of the attack.

Formulation: This is precisely the problem described by
(1)–(4), but put slightly rephrased to better compare it to
BLOCK-ALL. There are two differences from BLOCK-ALL.
First, the goal is to minimize the total cost of the attack, which
involves both collateral damage and the filtering benefit

, which is expressed by (11). Second, (13) states that every
bad address must be filtered by at most one prefix, which means
that it may or may not be filtered

(11)

s.t. (12)

(13)

Characterizing an Optimal Solution: As with BLOCK-ALL,
our algorithm starts from LCP-tree and outputs a pruned
version of that LCP tree. The only difference is that some bad
addresses may now remain unfiltered. In the pruned LCP sub-
tree that represents our solution, this means that there may exist
intermediate (nonleaf) nodes with a single child.

Proposition 3.3: An optimal solution to BLOCK-SOME can
be represented as a pruned subtree of LCP-tree with the
same root as LCP-tree and up to leaves.

Proof: In Proposition 3.1, we proved that any solution of
(5) and (6) can be reduced to a (pruned) subtree of the LCP tree
with at most leaves. Moreover, the constraint expressed by
(13), which imposes the use of nonoverlapping prefixes, is auto-
matically imposed considering the of the pruned subtree
as the selected filter. This proves that any feasible solution of
BLOCK-SOME can be represented as a pruned subtree of the
LCP tree with at most leaves, and thus, so can an optimal
solution.

Algorithm: The algorithm that solves BLOCK-SOME is sim-
ilar to Algorithm 1 in that it relies on the LCP tree and a dynamic
programming (DP) approach. The main difference is that not all
bad addresses need to be filtered. Hence, at each step, we can
assign filters to the left and/or right subtree, whereas in
line 11 of Algorithm 1 we had , now we have

. We can recursively compute the optimal solu-
tion as before

(14)

with boundary conditions

(15)

(16)

(17)

where is an intermediate node (prefix) and is a leaf node
in the LCP-tree.

Complexity: The analysis of Algorithm 1 applies to this al-
gorithm as well. The complexity is the same, i.e., linearly in-
creasing with .

BLOCK-ALL Versus BLOCK-SOME: There is an interesting
connection between the two problems. The latter can be re-
garded as an automatic way to select the best subset from
and run BLOCK-ALL only on that subset. If the absolute value
of weights of bad addresses are significantly larger than the
weights of the good addresses, then BLOCK-SOME degener-
ates to BLOCK-ALL.

D. TIME-VARYING BLOCK-ALL(SOME)

We now consider the case when the blacklist and whitelist
change over time, and we seek to incrementally update the
filtered prefixes that are affected by the change. More precisely,
consider a sequence of blacklists and of
whitelists at times , respectively.

Problem Statement: Given: 1) a blacklist and whitelist,
and ; 2) the number of available filters ;

3) the corresponding solution to BLOCK-ALL(SOME), de-
noted ; and 4) another blacklist and whitelist, and

; obtain the solution to BLOCK-ALL(SOME) for the
second blacklist/whitelist, denoted .

Algorithm: Consider, for the moment, that the whitelist re-
mains the same and assume the focus is on the changes in the
blacklist.

1) Addition: First, consider that the two blacklists differ only
in a single new bad address, which does not appear in ,
but appears in . There are two cases, depending on whether
the new bad address belongs to a prefix that is already filtered
in . If it is, no further action is needed, and .
Otherwise, we modify the LCP tree that represents to also
include the new bad address, as illustrated in Fig. 3. The key
point is that we only need to add one new intermediate node
to the LCP tree (the gray node in Fig. 3), corresponding to the
longest common prefix between the new bad address and its
closest bad address that is already in the LCP tree. The optimal
allocation of filters to the subtree rooted at prefix depends
only on how these filters are allocated to the children of .
Hence, when we add a new node to the LCP tree, we need to
recompute the optimal filter allocation [i.e., recompute
and , according to (8)] for all and only the ancestors
of the new node, all the way up to the root node.

2) Deletion: Then, assume that two blacklists differ in one
deleted bad address, which appears in but not in .
In this case, we modify the LCP tree that represents to
remove the leaf node that corresponds to that address as well as
its parent node (since that node does not have two children any
more), and we recompute the optimal filter allocation for all and
only the node’s ancestors.

3) Adjustment: Finally, suppose that the two blacklists differ
in one address, which appears in both blacklists but with dif-
ferent weights, or that the two blacklists are the same, while the
two whitelists differ in one address (it either appears in one of
the two whitelists or it appears in both whitelists but with dif-
ferent weights). In all of these cases, we do not need to add or re-
move any nodes from the LCP tree, but we do need to adjust the
collateral damage or filtering benefit associated with one node,
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Fig. 3. Example of BLOCK-ALL and TIME-VARYING
BLOCK-ALL. Consider a blacklist of 10 bad IP addresses
�� � ���������� ���������� ���������� ���������� ���������� ����������
���������� ���������� ���������� ����������. The table next to each
node � shows the minimum cost � 	� 
 computed by the DP algorithm
for BLOCK-ALL for � � �� � � � number of leaves in subtree. The optimal
solution to BLOCK-ALL consists of the four prefixes highlighted in black.
When a new address, e.g., 10.0.0.37, is added to the blacklist, a leaf node
is added to the tree and TIME-VARYING needs to update all and only the
ancestor nodes in LCP-tree	��
, indicated by the dashed lines, according to
(8). Moreover, a new node is created to denote the longest common prefix
between 10.0.0.37 and 10.0.0.32 (or 10.0.0.33). Note that all other nodes
corresponding to the longest common prefixes between 10.0.0.37 and other
addresses in �� are already in the LCP tree. The new optimal solution consists
of the four prefixes indicated by the dashed circles.

hence recompute the optimal filter allocation for all and only
that node’s ancestors.

4) Multiple Addresses: If the two successive time instances
differ in multiple addresses, we repeat the procedures described
above as needed, i.e., we perform one node addition for each
new bad address, one deletion for each removed bad address,
and up to one adjustment for each other difference.

Complexity: Since the LCP tree is a complete binary tree,
any leaf node has at most ancestors, so inserting a
new bad address (or removing one) requires
operations. Hence, deriving from as described above
is asymptotically better than computing it from scratch using
Algorithm 1 if and only if the number of different addresses
between the two time instances is less than .

E. FLOODING

Problem Statement: Given: 1) a blacklist and a
whitelist , where the absolute weight of each bad and
good address is equal to the amount of traffic it generates;
2) the number of available filters ; and 3) a constraint on
the victim’s link capacity (bandwidth) ; select filters so as to
minimize collateral damage and make the total traffic fit within
the victim’s link capacity.

Formulation: To formulate this problem, we need to make
two adjustments to the general framework of (1)–(4). First, (1)
becomes (18), which expresses the goal to minimize collateral
damage. Second, we add a new constraint (20), which specifies
that the total traffic that remains unblocked after filtering (which
is the total traffic, , minus the traffic that

gets blocked, ) should fit within the link
capacity , so as to avoid congestion and packet loss

(18)

s.t. (19)

(20)

(21)

Characterizing an Optimal Solution: We represent the op-
timal solution as a pruned subtree of an LCP-tree. However,
we start with the full binary tree of all bad and good addresses
LCP-tree . Moreover, to handle the constraint in
(20), each node corresponding to prefix is assigned an addi-
tional cost, , indicating the total amount of traffic sent by ,

.
Proposition 3.4: An optimal solution of FLOODING can be

represented as the leaves of a pruned subtree of LCP-tree
, with the same root, up to leaves, and the total cost

of the leaves .
Proof: Similarly to Proposition 3.1, we prove that for every

feasible solution to FLOODING , there exists another feasible
solution , which: 1) can be represented as a pruned subtree
of LCP-tree as described in the proposition; and
2) whose collateral damage is smaller or equal to ’s. This is
sufficient to prove the proposition since an optimal solution is
also a feasible one.

Any filtering solution can be represented as a pruned subtree
of LCP-tree with the same root and leaves
corresponding to the filtered prefixes. is a feasible solution
to FLOODING, therefore: ’s tree has up to leaves, oth-
erwise (19) would be violated; the total cost of ’s leaves is

, otherwise (20) would be violated.
Suppose that includes a prefix that is not in

LCP-tree . We can construct a better feasible
solution , which can be represented as a pruned subtree
of LCP-tree : has the same root, up to
leaves, and total cost of the leaves . There are three
possibilities.

1) includes neither bad nor good addresses. In this case, we
can simply remove from , i.e., unblock .

2) Only one of ’s children includes bad or good addresses.
In this case, we can replace with the child that contains
the bad addresses.

3) Both of ’s children include bad or good addresses. In this
case, is already a longest common prefix, and we do not
need to do anything.

Clearly, each of these operations transforms feasible solu-
tion into another feasible solution with smaller or equal
collateral damage while still preserving the capacity constraint.
This is because the transformations filter the same amount
of traffic, just using the longest prefix possible to do so. We
can repeat this process for all prefixes that are in but not in
LCP-tree , until we create a feasible solution
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that includes only prefixes from LCP-tree and has
smaller or equal collateral damage.

Theorem 3.5: FLOODING [i.e., (18)–(21)] is NP-hard.
Proof: To prove that FLOODING is -hard, we con-

sider the knapsack problem with a cardinality constraint

(22)

(23)

s.t. (24)

which is known to be -hard [11], and we show that it reduces
to FLOODING. To do this, we put FLOODING in a slightly
different form by making two changes.

First, we change the inequality in (19) to an equality. Any
feasible solution to FLOODING that uses filters
can be transformed to another feasible solution with exactly

filters, without increasing collateral damage. In fact, given
a feasible solution that uses filters, as long as

, it is always possible to remove a filter from a prefix
and add two filters to the two prefixes corresponding to ’s chil-
dren in LCP-tree . The solution constructed this way
uses filters, blocks all addresses blocked in , and has a
cost that is less or equal to ’s.

Second, we define variables , ,
and and use them to rewrite FLOODING

(25)

s.t. (26)

(27)

(28)

For a given instance of the problem defined by (22) and (23),
we construct an equivalent instance of the problem defined by
(25)–(28) by introducing the following mapping. For

: , . For all other prefixes that
are not addresses in the blacklist or whitelist:

. Moreover, we assign and . With
this assignment, a solution to the problem defined by (22) can
be obtained by solving FLOODING, then taking the values of
variables that are blocked.

Algorithm: Given the hardness of the problem, we do not
look for a polynomial-time algorithm. We design a pseudo-poly-
nomial-time algorithm that optimally solves FLOODING. Its
complexity is linearly with the number of good and bad ad-
dresses and with the magnitude of .

Our algorithm is similar to the one that solves
BLOCK-SOME, i.e., it relies on an LCP tree and a DP
approach. However, we now use the LCP tree of all the bad
and good addresses. Moreover, when we compute the optimal
filter allocation for each subtree, we now need to consider not

only the number of filters allocated to that subtree, but also
the corresponding amount of capacity (i.e., the amount of the
victim’s capacity consumed by the unfiltered traffic coming
from the corresponding prefix). We can recursively compute
the optimal solution bottom–up as before

(29)

where is the minimum collateral damage of prefix
when allocating filters and capacity to that prefix.

Complexity: Our DP approach computes entries
for every node in LCP-tree . Moreover, the compu-
tation of a single entry, given the entries of descendant nodes,
require operations, (29). We can leverage again the
observation that we do not need to compute entries for
all nodes in the LCP tree: At a node , it is sufficient to com-
pute (29) only for
and . Therefore, the
optimal solution to FLOODING, , can be com-
puted in time. This is increasing linearly
with the number of addresses in and is polynomial
in . The overall complexity is pseudo-polynomial because
cannot be polynomially bounded in the input size. In the evalu-
ation section, we present a heuristic algorithm that operates in
increments of . Finally, we note that and thus

does not appear in the asymptotic complexity.
BLOCK-SOME Versus FLOODING: There is an interesting

connection between the two problems. To see that, consider the
partial Lagrangian relaxation of (18)–(21)

(30)

s.t. (31)

(32)

For every fixed , (30)–(32) are equivalent to (11)–(13) for
a specific assignments of weights . This shows that dual fea-
sible solutions of FLOODING are instances of BLOCK-SOME
for a particular assignment of weights. The dual problem, in the
variable , aims exactly at tuning the Lagrangian multiplier to
find the best assignment of weights.

F. DISTRIBUTED-FLOODING

Problem Statement: Consider a victim that connects to
the Internet through its ISP and is flooded by a set of attackers
listed in a blacklist , as in Fig. 1(a). To reach the victim,
attack traffic passed through one or more ISP routers. Let
be the set of unique such routers. Let each router have
capacity on the downstream link (toward ) and a limited
number of filters . The volume of good/bad traffic through
every router is assumed known. Our goal is to allocate filters on
some or all routers, in a distributed way, so as to minimize the
total collateral damage and avoid congestion on all links of the
ISP network.
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Formulation: Let the variables indicate
whether or not filter is used at router . Then, the dis-
tributed filtering problem can be stated as

(33)

s.t. (34)

(35)

(36)

Characterizing an Optimal Solution: Given the sets ,
, , and , at each router, we have the following.

Proposition 3.6: There exists an optimal solution of
DIST-FLOODING that can be represented as a set of
different pruned subtrees of the LCP-tree , each
corresponding to a feasible solution of FLOODING for the
same input, and s.t. every subtree leaf is not a node of another
subtree.

Proof: Feasible solutions of DIST-FLOODING allocate
filters on different routers s.t. (34) and (35) are satisfied indepen-
dently at every router. In the LCP tree, this means having
subtrees, one for every router, each having at most leaves
and their associated blocked traffic , where is
the total incoming traffic at router . Each subtree can be thought
as a feasible solution of a FLOODING problem. Eq. (36) en-
sures that the same address is not filtered multiple times at dif-
ferent routers, to avoid waste of filters. In the LCP-tree, this
translates into every leaf appearing at most in one subtree.

Algorithm: Constraint (36), which imposes that different
routers do not block the same prefixes, prevents us from a
direct decomposition of the problem. To decouple the problem,
consider the following partial Lagrangian relaxation:

(37)

where is the Lagrangian multiplier (price) for the constraint
in (36), and is the price associated with
prefix . With this relaxation, both the objective function and
the other constraints immediately decompose in indepen-
dent subproblems, one per router

(38)

s.t. (39)

(40)

The dual problem is

(41)

where is the optimal solution of (38)–(40) for a given
. Given the prices , every subproblem (38)–(40) can be

solved independently and optimally by router using (29).
Problem (41) can be solved using a projected subgradient
method [11]. In particular, we use the following update rule to
compute shadow prices at each iteration:

where is the step size. The interpretation of the update rule is
quite intuitive: For every that is filtered with multiple filters,
the corresponding shadow price is augmented proportion-
ally to the number of times it is blocked. Increasing the prices
has in turn the effect of forcing the router to try to unblock the
corresponding . The price is increased until a single filter is
used to block that .

Note, however, that since is an integer variable, ,
the dual problem is not always guaranteed to converge to a
primal feasible solution [13].

Distributed Versus Centralized Solution: When the number
of source attackers is too large to be blocked at a single router,
we need to combine resources such as the overall network ca-
pacity and the number of filters, available at multiple routers to
reduce the overall collateral damage. The optimal allocation of
filters, in that case, can be found by solving (33)–(36) provides
the optimal allocation of filters in that case.

The solution can be found either in a centralized or in a dis-
tributed way. In a centralized approach, a single node solves
(33)–(36) and distributes the optimal filter allocation to the all
routers involved. This reduces the communication overhead be-
tween routers, however the computation burden is put all on the
node that solves both the master problem and different sub-
problems. This can become infeasible in practice due to the large
number of attackers.

An alternative approach is to have each router solve its own
subproblem (38)–(40) and a single node (e.g., the victim’s
gateway or a dedicated node) to solve the master problem (41).
The communication overhead of this scheme is limited. At
every iteration of the subgradient, the shadow prices ’s are
broadcast to all routers. For 100 000 of bad IPs, if we encode
the value of variables using 2 B, each router need to send
about 200 kB of data at each iteration. Given the ’s, the
routers solve independently a subproblem each and return the
computed to the node in charge of the master problem. In
general, let denote the total number of active IP sources, and
the communication overhead is per router per
iteration. Our approach only requires communication between
the node solving the master problem and the nodes solving
the subproblems. It does not entail communication between
subproblems, which would incur a significant communication
overhead.
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IV. SIMULATION RESULTS

In this section, we evaluate our algorithms using real logs
of malicious traffic from Dshield.org. We demonstrate that
our algorithms bring significant benefit compared to nonopti-
mized filter selection or to generic clustering algorithms in a
wide range of scenarios. The reason is the well-known fact that
sources of malicious traffic exhibit spatial and temporal clus-
tering [3]–[9], which is exploited by our algorithms. Indeed,
clustering in a blacklist allows to use a small number of filters to
block prefixes with high density of malicious IPs at low collat-
eral damage. Furthermore, it has also been observed that good
and bad addresses are typically not colocated, which allows for
distinguishing between good and bad traffic [6], [7], [15], and
in our case for efficient filtering of the prefixes with most mali-
cious sources.

A. Simulation Setup

We used 61-day logs from Dshield.org [10]—a repos-
itory of firewall and intrusion detection logs collected. The
dataset consists of 758 698 491 attack reports, from 32 950 391
different IP sources belonging to about 600 contributing orga-
nizations. Each report includes a timestamp, the contributor
ID, and the information for the flow that raised the alarm,
including the (malicious) source IP and the (victim) destination
IP. Looking at the attack sources in the logs, we verified that
malicious sources are clustered in a few prefixes, rather than
uniformly distributed over the IP space, consistently with what
was observed before, e.g., in [3]–[7].

In our simulations, we considered a blacklist to be the set
of sources attacking a particular organization (victim) during a
single day-period. The degree of clustering varied significantly
in the blacklists of different victims and across different days.
The higher the clustering, the more benefit we expect from our
approach. We also simulated the whitelist by generating good
IP addresses according to the multifractal distribution in [16]
on routable prefixes. We performed the simulations on a Linux
machine with a 2.4-GHz processor with 2 GB RAM.

B. Simulation of BLOCK-ALL and BLOCK-SOME

Simulation Scenarios I and II: In Fig. 4, we consider two
example blacklists corresponding to two different victims, each
attacked by a large number of malicious IPs in a single day.
In order to demonstrate the range of benefit of our approach,
we chose the blacklists with the highest and the lowest degree
of source clustering observed in the entire data set, referred
to as “High Clustering” (Scenario I) and “Low Clustering”
(Scenario II), respectively. The degree of clustering of a black-
list is captured by the entropy associated with the distribution
of the IP addresses [17]. Intuitively, a blacklist with low entropy
(i.e., high clustering) contains IP addresses in a few prefixes
and thus is easier to block.

We compare Algorithm 1 to a -means, which is gen-
eral yet prefix-agnostic. -means is a well-known clustering
problem [18]: The goal is to partition all observations (in our
context, IP addresses) in clusters such that each address
belongs to the cluster with the nearest mean. We use the most

Fig. 4. Evaluation of BLOCK-ALL in Scenarios I (High Clustering blacklist)
and II (Low Clustering blacklist). We plot the collateral damage (CD) (normal-
ized over the number of malicious sources� ) versus number of filters� . We
compare Algorithm 1 to �-means clustering (we simulated 50 runs of Lloyd’s
algorithm [14]).

common algorithm to solve the problem, known as Lloyd’s
algorithm [14], which uses an iterative refinement technique.

BLOCK-ALL: We ran Algorithm 1 in these Scenarios I and
II, and we show the results in Fig. 4. We made the following ob-
servations. First, the optimal algorithm performs significantly
better than a generic clustering algorithm that does not exploit
the structure of IP prefixes. In particular, it reduces the collat-
eral damage (CD) by up to 85% compared to -means when
run on the same (high-clustering) blacklist. Second, the degree
of clustering in a blacklist matters: The CD is lowest (highest) in
the blacklist with highest (lowest) degree of clustering, respec-
tively. Results obtained for different victims and days were sim-
ilar and lied in between the two extremes. A few thousands of
filters were sufficient to significantly reduce collateral damage
in all cases.

BLOCK-SOME: In Fig. 5, we focus on Scenario II, i.e., the
Low Clustering blacklist, which is the least favorable input for
our algorithm and has the highest CD (shown in dashed line
in Fig. 4). Compared to BLOCK-ALL, which blocks all bad
IPs, BLOCK-SOME allows the operator to trade off lower CD
for some unfiltered bad IPs by appropriately tuning the weights
assigned to good and bad addresses. For simplicity,
in Fig. 5, we assign the same weight to all good addresses,
and the same weight to all bad addresses. Fig. 5 shows results
for two different values of . (However, we note that
our framework has the flexibility to assign different weights to
each individual IP address.)

In Fig. 5(a), CD is always smaller than the corresponding
CD in Fig. 4; they become equal only when we block all bad
IPs. In Fig. 5(b), we observe that BLOCK-SOME reduces the
CD by 60% compared to BLOCK-ALL while leaving unfiltered
only 10% of bad IPs and using only a few hundreds a filters. In
Fig. 5(c), the total cost of the attack (i.e., the weighted sum of
bad and good traffic blocked) decreases as increases. The
interaction between these two competing factors is complex and
strongly depends on the input blacklist and whitelist. In the data
we analyzed, we observed that CD tends to first increase and
then decrease with , while the number of unfiltered bad
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Fig. 5. Evaluation of BLOCK-SOME for Scenario II (Low Clustering black-
list). Three metrics are considered: (a) collateral damage (CD), (b) number of
unfiltered bad IPs (UBIP), (c) and total cost �� �� � ����. The operator
expresses preference for UBIP versus CD by tuning the weights � �� . We
considered a high (2 ) and a low (2 ) value for � � � �� .

IPs tends to decrease The ratio captures the effort2 made
by BLOCK-SOME to block all bad IPs and become similar to
BLOCK-ALL.

C. Simulation of FLOODING and DIST-FLOODING

Simulation Scenario III: We consider a Web server under a
DDOS attack. We assume that the server has a typical access
bandwidth of Mb/s and can handle 10 000 connec-
tions per second (a typical capability of a Web server that han-
dles light content). We assume that each good (bad) source gen-
erates the same amount of good (bad) traffic. We also assume
that filters are available (consistently with the
discussion in footnote 1), and we vary . Be-
fore the attack, 5000 good sources are picked from [16] and
utilize 10% of the capacity. During the attack, the total bad
traffic is Gb/s and is generated by a typical black-
list (141 763 bad source IPs), based on Dshield logs of a ran-
domly chosen victim for a randomly chosen day.3

FLOODING—Optimal: Fig. 6(a) and (b) shows the collateral
damage of the optimal solution of FLOODING, for Scenario III,
as a function of the number of available filters and of the
bottleneck capacity , respectively.

We simulate two baselines, namely uniform rate-limiting
and source address prefix filtering (SAPF) [15], and we
compare them to our approach. The uniform rate-limiting
approach drops the same fraction of traffic of all incoming

2Since we picked a ratio � �� � 	, bad IPs are more important. When
� is high, the algorithm first tries to cover small clusters or single bad IPs.
In the case of high � , this happens around 10 000 filters. CD remains almost
constant in this phase, at the end of which all bad IPs are filtered [as in Fig.
5(b)]. In the final phase, the algorithm releases single good IPs, which are less
important, and all bad IPs are blocked similarly to BLOCK-ALL.

3However, because this problem is NP-hard, we do not simulate the entire
IP space, but the range [60.0.0.0, 90.0.0.0], which is known to account for the
largest amount of malicious traffic, e.g., see [6]. We also scale all parameters by
a factor of 8, � �� � � to maintain a constant ratio between the number
of IPs and � , and the total flow generated and � .

Fig. 6. Optimal Solution of FLOODING in Scenario III. (a) ���� versus
� . We show the normalized collateral damage ���� as a function of the
number of available filters � when � is fixed, � � � . (b) ����
versus � . We show ���� as a function of the available capacity �
when � is fixed, � � � .

flows, which is a common practice in DDOS attacks [19].
Since, in a typical DDOS attack, bad sources outnumber the
good sources, uniform rate-limiting disproportionately penal-
izes the good sources. While this solution is always applicable
and requires only one rate limiter, more filters (ACLs) can
drastically reduce the collateral damage. We simulated one
of the algorithms in [15], referred to as SAPF positive, which
selects prefixes to allow and denies traffic generated by
all IP addresses outside those prefixes.4 It uses clustering to
find initial IP addresses to allow. Then, it greedily
shortens the length of the allowed prefixes, thus allowing
more traffic, until the available capacity is completely used.
This heuristic solves the FLOODING problem, but does not
guarantee an optimal solution. In our simulations, the optimal
solution found by our algorithm, for the same number of ACLs,
reduces the collateral damage by about a factor of 2. Another
observation is that, because of its heuristic nature, SAPF does
not necessarily decrease monotonically with , consistently

4In [15], there are three heuristics proposed for generating ACL lists: a pos-
itive algorithm (which specifies prefixes to allow and blocks all other traffic),
a negative (which specifies prefixes to block and accepts all other traffic), and
a mixed (with possibly overlapping prefixes). In this paper, we compare our
optimal algorithm for the FLOODING problem only against the positive algo-
rithm. The positive algorithm was found, in [15], to perform the best (i.e., have
the lowest collateral damage for the same number of ACLs), followed closely
by the mixed algorithm. The negative algorithm performed the worse; this is
why we do not compare against it, although it is more similar to our approach.
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with [15], which might result in inefficient use of the available
filters. In summary, compared to [15], our work finds the
optimal solution at the lowest possible complexity (linear in the
input size) and for a wider range of problems (including but not
limited to FLOODING).

We also observe that varying the number of filters or the avail-
able capacity has a different impact on the collateral damage.
While the collateral damage decreases drastically as the number
of filters increases, when we increase the available capacity, we
observe two trends. First, as capacity increases, the optimal so-
lution allows traffic from good sources that do not belong in
prefixes with many malicious sources. This causes a linear de-
crease with slope equal to the amount of traffic generated by
good sources. For even larger , good IPs located in the same
prefix as malicious sources are released. This trend depends on
the specific clustering of good and bad IPs considered as well as
on the amount of traffic generated by both good and bad sources.
When the value of is too low, increasing does not
yield any benefit. Most of the improvement is obtained when
both types of resources (number of filters and capacity) increase.

FLOODING—Heuristic: The benefit of the optimal solution
of FLOODING comes at high computational cost due to the in-
trinsic hardness of the FLOODING problem. To address this
issue, we design a heuristic for solving FLOODING, which
can be tuned to achieve the desired tradeoff between collateral
damage and computational time. In particular, instead of solving
all subproblems for all possible values of
and , we consider discrete increments of capacity

, with step size . If , the finest
granularity of is considered, and the problem is optimally
solved. If , we may get a suboptimal solu-
tion, but we reduce the computation cost, as fewer iterations are
required to solve the DP.

Simulation Scenario IV: We consider again a DDOS at-
tack launched by 61 229 different bad source IPs, based
on the Dshield.org logs. The available capacity

Mb/s. Before the attack, the legitimate traffic
consumes Mb/s. During the attack, the total
bad traffic generated is Gb/s. This scenario is
more challenging than scenario III because there is less unused
capacity before the attack and more malicious traffic during the
flooding attack.

In Fig. 7, we show the percentage of good traffic that is
blocked by the heuristic versus the time required to obtain a
solution for Scenario IV. As we can see in Fig. 7, the optimal
solution of FLOODING requires about 1 day of
computation and has a CD that is only 6% of the total good
traffic. Larger values of allow to dramatically reduce the
computational time by about three orders of magnitude while
the CD is only increased by a factor 2–3. This asymmetry was
also the case in other Dshield logs we simulated. This can
be very useful in practice: An operator may decide to use an
approximation of the optimal filtering policy to immediately
cope with incoming bad traffic, and then successively refine the
allocation of filters to further reduce the collateral damage if
the attack persists.

DISTRIBUTED-FLOODING: We simulated the scenario
where an ISP utilizes multiple routers to collaboratively block
malicious traffic. We consider the same scenario (III) as for the

Fig. 7. Heuristic solution of FLOODING in Scenario IV. An approximate so-
lution (higher CD) is obtained by solving only the subproblems � ��� ����
for � � and � � ��� � � , � � �� � � � �. The coarser the capacity
increments �� , the fewer subproblems we need to solve, but at the cost of
higher collateral damage. In this scenario, increasing �� significantly reduces
the computational time by three orders of magnitude, while the percentage of
good traffic that is blocked (CD %) is only increased by a factor 3.

Fig. 8. Distributed flooding. This topology exemplifies the part of a potentially
larger ISP topology involved in routing and blocking traffic toward victim � .
The edge routers receive all incoming, malicious and legitimate, traffic toward
victim � and route it through shortest paths with ties broken randomly. Any of
the traversed routers (indicated with circles) can be used to deploy ACLs and
block the malicious traffic.

optimal flooding for a single router, but now we assume that
the traffic reaches the victim through its ISP, as in Fig. 8.

We use a subgradient descent method to solve the dual
problem in (41). In Fig. 9, we show the convergence of the
method for two different step sizes: 0.05 and 0.01. We also
compare against the “no coordination” case, when routers
do not coordinate but act independently to block malicious
traffic; this corresponds to the first iteration of the subgradient
method. In the next iterations, routers coordinate, through the
exchange of shadow prices , and avoid the redundant overlap
of prefixes at multiple locations. This reduces the collateral
damage significantly, i.e., by 50%.

Increasing the number of routers has two effects. On one
hand, it increases the total number of filters available to block
source IPs and thus can potentially reduce the overall collateral
damage. On the other hand, deploying more routers increases
the communication overhead required to coordinate them.
In Fig. 10, we study the tradeoff between reduced collateral
damage and increased communication overhead as the number
of routers increases. For simplicity, we assume that each router
has the same number of filters, i.e., . As
we can see in Fig. 10, increasing the number of routers provides
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Fig. 9. Evaluation of DIST-FLOODING in Scenario III. Results are shown
for the distributed algorithm and two different values for the step size (0.01
and 0.05) of the subgradient method. The dashed line shows the case of “No
Coordination,” i.e., when each router acts independently.

Fig. 10. Distributed flooding: ���� and communication overhead versus
���. On the �-axis is the number of routers ���. On the left �-axis is the
normalized collateral damage ���� . On the right �-axis is the overall
communication overhead (MB/iteration) required to coordinate routers. As
���� decreases faster than the communication overhead increases, there is a
sweet spot (three routers, for this input blacklist) where we benefit from large
reduction of ���� while incurring a modest increase in the communication
overhead required.

a significant benefit in terms of reducing the collateral damage,
while the communication overhead increases only linearly
with the overall number of filters available, as discussed in
Section III-F. Depending on the bandwidth available and on the
tolerable level of collateral damage, a network administrator
can decide how many routers should be deployed to filter the
attack sources. Our work provides the framework to do so in a
principled way.

V. RELATED WORK

Bigger Picture: Dealing with malicious traffic is a hard
problem that requires the cooperation of several components,
including detection and mitigation techniques, as well as
architectural aspects. In this paper, we optimize the use of
filtering—a mechanism that already exists on the Internet today
and is a necessary building block of any bigger solution. More
specifically, we focus on the optimal selection of which prefixes
to block. The filtering rules can be then propagated by filtering
protocols [19]–[21] and ideally installed on routers as close to
the attack sources as possible. We note, however, that such pro-
tocols typically assume the ability to filter traffic at arbitrarily
fine granularity and focus on where to place the filters rather

on which filters to pick. Therefore, they are complementary but
orthogonal to this work.

We rely on an intrusion detection system or on historical data
to distinguish good from bad traffic and to provide us with a
blacklist. Detection of malicious traffic is an important problem,
but out of the scope of this paper. The sources of legitimate
traffic are also assumed known and used for assessing the collat-
eral damage—e.g., Web servers or ISPs typically keep historical
data and know their important customers. We also consider ad-
dresses in the blacklist to not be spoofed.

A practical deployment scenario is that of a single network
under the same administrative authority, such as an ISP or a
campus network. The operator can use our algorithms to install
filters at a single edge router or at several routers in order to
optimize the use of its resources and to defend against an attack
in a cost-efficient way. Our distributed algorithm may also be
useful, not only for a routers within the same ISP, but also, in the
future, when different ISPs start cooperating against common
enemies [20].

The problems studied in this paper are also related to firewall
configuration to protect public-access networks. Unlike routers
where TCAM puts a hard limit on the number of ACLs, there is
no hard limit on the number of firewall rules in software. How-
ever, there is still an incentive to minimize their number and
thus any associated performance penalty [22]. There is a body of
work on firewall rule management and (mis)configuration [23],
which aims at detecting anomalies, while we focus on resource
allocation.

Measurement Studies: Several measurement studies have
demonstrated that malicious sources exhibit spatial and tem-
poral clustering [3]–[7], [9]. In order to deal with dynamic
malicious IP addresses [8], IP prefixes rather than individual IP
addresses are typically considered. The clustering, in combina-
tion with the fact that the distribution of addresses as well as
other statistical characteristics differ for good and bad traffic,
have been exploited in the past for detection and mitigation of
malicious traffic, such as, e.g., spam [6], [7] or DDOS [15].
In this paper, we exploit these characteristics for efficient
prefix-based filtering of malicious traffic.

Prefix Selection: The work in [15] studied source prefix fil-
tering for classification and blocking of DDOS traffic, which
is closely related to our FLOODING problem. The selection of
prefixes in [15] was done heuristically, thus leading to large col-
lateral damage. In contrast, we tackle analytically the optimal
source prefix selection so as to minimize collateral damage. Fur-
thermore, we provide a more general framework for formulating
and optimally solving a family of related problems, including
but not limited to FLOODING.

The work in [24] is related to our TIME-VARYING
problem: It designed and analyzed an online learning algorithm
for tracking malicious IP prefixes based on a stream of labeled
data. The goal was detection, i.e., classifying a prefix as mali-
cious, depending on the ratio of malicious to legitimate traffic it
generates and subject to a constraint on the number of prefixes.
In contrast: 1) we identify precisely (not approximately) the
IP prefixes with the highest concentration of malicious traffic;
2) we follow a different formulation (dynamic programming
inspired by knapsack problems); 3) we use the results of detec-
tion as input to our filtering problem.
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An earlier body of literature focused on identifying IP pre-
fixes with significant amount of network traffic, typically re-
ferred to as hierarchical heavy hitters: [25]–[27]. However, it did
not consider the interaction between legitimate the malicious
traffic within the same prefix, which is the core tradeoff studied
in this paper.

Relation to Knapsack Problems: Filter selection belongs to
the family of multidimensional knapsack problems (dKP) [11].
The general dKP problem is well known to be NP-hard. The
most relevant variation is the knapsack with cardinality con-
straint (1.5KP) [28], [29], which has constraints, one of
them being a limit on the number of items: ,

. The 1.5KP problem is also NP-hard.
These classic problems do not consider correlation between

items. However, in filtering, the selection of an item (prefix)
voids the possibility to select other items (all overlapping
prefixes). dKP problems with correlation between items have
been studied in [30] and [31], where the items were partitioned
into classes and up to one item per class was picked. In our
case, a class is the set of all prefixes covering a certain address.
Each item (prefix) can belong simultaneously to any number of
classes, from one class (/32 address) to all classes (/0 prefix).
To the best of our knowledge, we are the first to tackle a case
where the classes are not a partition of the set of items.

A continuous relaxation does not help either. Allowing
to be fractional corresponds to rate-limiting of prefix . This
has no advantage neither from a practical (rate limiters are more
expensive than ACLs because, in addition to looking up packets
in TCAM, they also require rate and computation on the fast
path) nor from a theoretical point of view (the continuous 1.5KP
is still NP-hard [32].)

In summary, the special structure of the prefix filtering
problem, i.e., the hierarchy and overlap of candidate prefixes,
leads to novel variations of dKP that could not be solved by
directly applying existing methods in the KP literature.

Our Prior Work: This paper builds on our conference
paper in [33]. New contributions in this paper include: the
formulation and optimal solution of the time-varying version
of the filtering problem; an extended evaluation section that
simulates all filtering problems over Dshield.org logs,
including FLOODING and DIST-FLOODING, which were not
evaluated in [33]; and additional proofs, complexity analysis,
and simulation results.

In [34], we also studied optimal range-based filtering, where
malicious source addresses were aggregated into continuous
ranges (of numbers in the IP address space ), instead
of prefixes, and we developed greedy solutions. Unfortunately,
ranges are not implementable in ACLs. Furthermore, it is well
known that ranges cannot be efficiently approximated by a
combination of prefixes [12].

VI. CONCLUSION

In this paper, we introduce a framework for optimal source
prefix-based filtering. The framework is rooted at the theory
of the knapsack problem and provides a novel extension to
it. Within it, we formulate five practical problems, presented
in increasing order of complexity. For each problem, we de-
signed optimal algorithms that are also low-complexity (linear
or pseudo-polynomial in the input size). We simulate our

algorithms over Dshield.org logs and demonstrate that
they bring significant benefit compared to nonoptimized filter
selection or to generic clustering algorithms. A key insight
behind that benefit is that our algorithms exploit the spatial and
temporal clustering exhibited by sources of malicious traffic.
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